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We investigate the interaction between a single atom and optical pulses with a controlled temporal envelope.
By switching the temporal shape from rising exponential to square profile, we show that the rising exponential
envelope leads to higher excitation probability for a fixed photon number. The atomic transition saturates for
≈ 50 photons in a pulse. Rabi oscillations with 100 MHz frequency are visible indetected fluorescence for
excitations powers of≈ 100 photons in 5 ns pulse.

INTRODUCTION

Quantum networks are viewed as one of the essential de-
velopments in quantum information science [? ? ? ]. In
most scenarios, the resource of the quantum network is en-
tanglement that is shared between the network nodes and that
is distributed through quantum channels by carriers. Natu-
rally, one can think of atomic two-level systems as nodes, and
single photons as carriers. Boosting the efficiency of on-site
interactions between photons and atoms and scaling quantum
networks to many sites is one of the most pursued tasks in
experimental quantum information [? ].

The exchange of information between atoms and photons
is done by fundamental processes of emission and absorption.
It is thus highly desirable to achieve an excitation probabil-
ity of an atom by a photon close to unity. It is common to
solve this problem in a context of cavity QED, where the field
strength of single photons at the location of the atom is dra-
matically increased by using optical cavities with small mode
volumes [? ]. However complicated highly reflective dielec-
tric coatings are required to decouple the cavity from environ-
mental losses which compromises the scaling of such system
to many node operations. To relax the coating requirements,
the mode volume has to be further decreased and several ex-
perimental efforts target this issue [? ], It was also demon-
strated that placing an atomic 2-level system at the focus of
a simple lens also leads to reasonably strong interaction [?
? ? ]. In this case, the emission and absorption of photons
are not affected by presence of cavities and their efficiency
depends on theoverlap between atomic and photonic spatial
and frequency modes. Considering only dipole allowed tran-
sitions and lifetime limited spectral absorption profile, it can
be shown [? ? ] that near perfect excitation probability can
be achieved with a wavepacket that has an exponentially ris-
ing temporal envelope with a characteristic time on the order
of the decay time of the excited atomic state. The difference
in excitation probability between this pulse and pulses with
other envelopes depends on the spatial overlap and expected
to be maximal when the spatial distribution of incoming field
matches the dipolar pattern of atomic emission [? ].

In this letter we investigate the effect of temporal shaping
of light pulses on the excitation probability of a closed cycling
transition in single87Rb atom.

THEORY

We are interested in determining the excitation probability
Pe of a two-level atom by a travelling light pulse. This prob-
ability is given by an expectation value of a Pauli operator
σ̂z = |e〉〈e| − |g〉〈g| [? ? ? ]

Pe(t) =
1

2
(〈Ψ0|σ̂z|Ψ0〉+ 1) , (1)

where |Ψ0〉 = |g〉|Φp〉|vac〉 is the initital state of
atom+field system. We thus start with atom being in the
ground state|g〉, a field is given by state|Φp〉 and the environ-
ment is initially in the vacuum state|vac〉. In our experiments,
the field is prepared in a coherent state wavepacket

|Φp〉 = exp
(

αÂ† − α∗Â
)

|0〉, (2)

with average photon number N

N = 〈Φp|Â†Â|Φp〉 = |α|2. (3)

HereÂ† is the wavepacket operator that is defined such that
when it acts on vacuum, the result is a single photon Fock
state wavepacket with spectral distribution functionf(ωk) and
spatial mode functionuk,λ(r) as in [? ]

Â†|0〉 =
∑

λ

∫

d3ku∗
k,λ(r)f(ωk)â

†
k,λ|0〉 = |1〉. (4)

Upon interaction of such a field with an atom, one gets the
expression for the dynamical coupling strengthg(t)

g(t) =
√

Γp N ξ(t), (5)

where

ξ(t) =
1√
2π

∫

dω f(ωk) e
−i(ω−ω0)t (6)

is the Fourier transform of the wavepacket spectral distri-
bution function (temporal envelope) andΓp is the decay rate
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of the atom into the pulse mode. It is determined by the spa-
tial overlap of the pulse mode with the dipolar emission pat-
tern and for a transition with dipole matrix elementd and fre-
quencyωa, is given by

Γp =
1

2(2π)2

(ωa

c

)3 d2

h̄ǫ0
Λ. (7)

HereΛ =
[

0, 8π
3

]

determines the solid angle subtended by
a pulse mode. ForΛ = 8π

3 , Γp = Γ is the total spontaneous
emission rate, obtained within Wigner-Weisskopf theory. The
excitation probability of equation 1 is obtained by solvinga
system of coupled differential equations for time-dependent
operators [? ], in which the coupling strengthg(t) enters as
a parameter.Do we show these equations!!??. Thus, excita-
tion probability of an atom interacting with a coherent light
wavepacket depends on a solid angle, subtended by a spa-
tial pulse modeΛ (spatial overlap), temporal bandwidth of
the pulse and its shapeξ(t) (frequency-temporal overlap) and
number of photons in a pulse N. We assumed that polarization
of the pulse was matched to the direction of atomic dipole in
equation 7.

In our experiment, the spatial overlap is fixed by a waist of
the Gaussian beamwL and the focal length of aspheric lensf.
In principle, the overlap can be obtained, by measuring the re-
flection of coherent cw light from a single atom [? ? ]. Know-
ing the amount of photons scattered by the atom (from the ex-
tinction measurement with APD 1 at Figure ) one just detects
the amount of clicks in the reflection arm (APD 2) and thus
obtains the collection efficiency by dividing the click detec-
tion rate by photon scattering rate. In our case, we measured
≈ 2.7%. collection efficiency. This fixes ourΛ at0.027 · 8π

3 .

EXPERIMENTAL SETUP

The experimental setup is schematically shown in Figure 1.
The atom is trapped at the focus of two confocally posi-

tioned aspheric lenses in a Far-Off Resonant Optical Dipole
Trap (FORT). The FORT is loaded from a magneto-optical
trap (MOT) consisting of≈ 104 atoms. Due to collisional
blockade one can achieve a subpoissonian atom distribution
with either zero or one atom in a trap at any instance of time [?
]. The probe beam defines a light mode that is coupled to the
atom and is delivered from a single mode optical fiber. This
fixes a spatial mode to be Gaussian with a characterstic waist
of wL = 1mm at the focussing lens. If no atom is present
in the trap, the second lens recollimates back the probe beam,
then it passses through several filters and finally is coupled
to another single mode fiber with 72% efficiency (point B to
point C on Figure 1). The other end of the fiber is attached to
an avalanche photodiode operating in photon counting mode.
Atomic fluorescence from MOT beam is collected into a sin-
gle mode fiber that is coupled to APD2 and gives us a trigger
signal, indicating that the atom has loaded into the FORT. Af-
ter 5 ms of molasses cooling we optically pump the atom to
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FIG. 1: Top: Setup for preparation of pulses with controllable wave-
form. DDS: direct digital synthesizer, BPF: stripline filter, AMP:
power amplifier. Bottom: Setup for transmission and reflection
measurement of light by a single atom. UHV: ultra high vacuum
(< 10

−11 mbar) chamber, AL: aspheric lenses with full NA=0.55
and focal lengthf = 4.51mm, PBS: polarizing beam splitter, ND
1,2: stacks of neutral density filters,λ′

is: retardation waveplates,
DM: dichroic mirrors, IF: intererence bandpass filters centered at 780
nm, FWHM = 1 nm.
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|F = 2,mF = −2〉 with circularly polarized probe light
for 10 ms. Then we send a train of 100 optical pulses with
varying temporal shape, photon number and characteristic
time to the atom. The optical frequencyfopt of the pulse is res-
onant to5S 1

2

|F = 2,mF = −2〉 → 5P 3

2

|F = 3,mF = −3〉.
This value of the frequency is obtained by independent mea-
surement of probe’s transmission with cw light. It includes
the shift of Zeeman sublevels due to the circularly polarized
trap field. The repetition rate of the sequence depends mostly
on the dead time of detectors and in our case was 83.3 kHz.

After probing, we check if the atom escapes the trap by
shining molasses beams for 20-30 ms. If atom is still inside,
the probing sequence is repeated. Once the atom escapes, the
same sequence of pulses is recorded for 3 seconds and serves
as the reference/background measurement. Since it is possible
to use both forward and backward detection directions with
respect to the probe propagation, we can study both the trans-
mission and reflection properties of the probe beam by a single
atom. Two single photon avalanche photodiodes were used to
detect transmitted/reflected light and the temporal histogram
of detection events was obtained with a timestamp unit. We
triggered the timestamp such that one could process the data
differentiating events when the atom was present or absent in
the trap. In the following section we describe the pulse prepa-
ration and detection scheme in more detail.

Preparation of excitation pulses with tailored temporal envelope

The scheme for generating optical pulses with varying tem-
proal overlap is shown in Figure 1a. The detailed description
of its performance is given elsewere [? ]. In brief, an electrical
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FIG. 2: Evolution of probe laser frequency while passing through
modulators.

pulse with a defined envelope is mixed with an RF signal and
fed into the fast EOM (20 GHz bandwidth). We used a home-
built circuit where we exploited the relation between base
voltage and collector current of a fast RF transistor to gen-
erate exponential pulses. The electrical pulse can be switched
on or off by an external signal in standard logic. We also used
the common rectangular envelope which was obtained from a
standard NIM pulse from a pattern generator. The probe laser
in initially locked to5S 1

2

|F = 3〉 → 5P 3

2

|F = 4〉in 85Rb. The
cw probe light is first sent through an acousto optic modulator
(AOM) that is used as a primary switch for the optical pulse.
The frequency of the probe light is then increased by twice the
AOM frequencyfAOM (see Figure 2).

The optical power extinction after the doubly passed AOM
is around 50dB. Then, the chopped probe is sent through an
EOM where it acquires frequency sidebands which are sep-
arated from a carrier frequencyfc by a frequency of the RF
wave fRF. We chosefRF = 1.5GHz such that the first red
sideband frequency is near resonance of the cycling transition
5S 1

2

|F = 2〉 → 5P 3

2

|F = 3〉 in 87Rb. By fine tuning offAOM

we can find the resonance frequencyfopt. In the low modula-
tion regime, the optical power in the first sidebands is almost
linear with respect to the RF modulation power. Thus, the
modulation temporal envelope is mapped into the sidebands
directly. To filter the first red sideband from the carrier we use
three consecutive optical resonators with FWHM linewidth of
≈ 460 MHz that are temperature tuned to transmit the side-
band frequency. In the end we achieve≈ 60 dB attenuation of
carrier power. Then the pulses were coupled to single-mode
fiber and delivered to the atom.

The number of photons in each pulse was varied by insert-
ing pre-calibrated neutral density filters (ND1 at Figure 1)into
the beam. The actual number of photons together with char-
acteristic pulse time was measured by fitting the histogram of
the photodetection events.

Photodetection scheme

This histogram was obtained by registering the arrival time
of the photodetection events in transmission and reflection
arms from two APDs. The APD in the reflection arm is an
actively quenched Perkin Elmer single photon counting mod-
ule with dead time of≈ 20 ns and quantum efficiency of 50%.
The other APD is a homemade passively quenched diode with
a dead time of≈ 3µ s and quantum efficiency of 55%. The
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FIG. 3: Rectangular and rising exponential excitation pulses. His-
tograms show the number of detected eventsNd in 1 ns time bin
versus time expressed in units of natural decay rateΓ = 26.3 ns

of 5P 3

2

|F = 3〉 in 87
Rb. (Left) Rectangular shape pulse with tem-

poral width of 15 ns and calculated photon numberN = 104 ± 5.
(Right) Rising exponential pulse with characteristic timeτ = 15ns

and photon numberN = 110± 6. Green line is the fit according to
equation 8. The errorbars are due to Poissonian counting statistics.

timestamp unit is a 4 channel time recorder with two channels
used as triggers and two channels receive signals from APD’s.
The deadtime of the timestamp after each registered event is
120 ns and temporal resolution is≈ 450 ps. To compensate
for the deadtime of the timestamp, a cable delay of 300 ns
was added to the APD 1 path. The histogram is obtained by
arranging the detection time into bins with temporal widths
∆tb and plotting the probability to find a click in each bin per
each trigger pulse.

MEASUREMENT OF PULSE PARAMETERS

In our experiment we investigate interactions of the atom
with pulses of two different shapes: rectangular and risingex-
ponential. The envelope shape is defined as

ξrect(t) =

{ √
Ω : for 0 ≤ t ≤ 1

Ω
0 : else

for a rectangular pulse and

ξexp(t) =

{ √
Ωexp

(

Ω
2 t
)

: for 0 ≤ t
0 : for t > 0

for a rising exponential pulse. HereΩ is the frequency
bandwidth of the pulse that can be expressed in terms of over-
all spontaneous emission rateΓ. To extract the photon num-
ber and temporal width of excitation pulses, we acquire the
histogram of photocounts with no atom in trap in the forward
direction with APD 2 see Figure 3.

The photon number is obtained by summing all detected
eventsNd,i in time bins ∆ti per number of triggersNT

and dividing the obtained number by losses in beam path
N = 1

ηlηND2

∑

i

Nd,i

NT
. The losses were measured to beηl =

0.3 ± 0.02 and include quantum efficiency of APD, coupling
efficiency to single mode fiber and reflection losses from all
optical components. Attenuation due to ND 2 stack of filters
is measured to 0.5 % uncertainty and varies from 2.5–5.1 dB.
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FIG. 4: Histogram of atomic fluorescence photocounts (blue trace)
and of excitation pulse (red trace). Initially, when the pulse is ON,
the fluorescence rate is determined by coupling to the field in the
pulse. When the pulse is finished, the atomic population and thus
fluorescence decays exponentially with decay rateΓ. The errorbars
are due to Poissonian counting statistics

The bandwidth of rectangular pulse was directly inferred from
a histogram and for exponential pulse, we used a following fit
function to obtain its characteristic timeτ

Ndet(t) = ηlηND2
Nexp(

t− t0
τ

)× exp(
∆ t

τ
− 1). (8)

Here the first exponential term reflects the envelope func-
tion and the second is due to Poissonian distribution of photo-
counts. Note that the characterization of the pulses was done
immediately after measurement of atomic response, during
the background measurement right after atom left the trap. We
are thus confident, that pulse parameters did not significantly
change during interaction with atom.

RESULTS

We quantify the interaction by measuring the excitation
probability of the atom by detecting fluorescent photons in
backward direction with APD 1. The temporal evolution
of detected photocounts is direcly related to the expectation
value of atomic operators and allows us to determine the oc-
cupancy of the excited state, that is the excitation probability
Pe. In Figure 4 we show the histogram of photocounts ob-
tained by exciting the atom with a rising exponential pulse of
Figure 3

The excitation probabilityPe is linked to the probabilityPd

of detecting an event in time bin width∆t per trigger as

Pd =
Nd,i

NT
= PeΓ∆t ηr

3Λ

8π
(9)

wherePeΓ is the rate at which the atom scatters photons
outside the,ηr stays for the losses in APD 1 arm and3Λ

8π is the
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FIG. 5: Maximal excitation probability versus the average photon
number in the pulse. Four plots correspond to different temporal
banwidths. Theory curves were obtained by numerically solving dif-
ferential equations for time-dependent operators [? ].

fraction of the solid angle subtended by the detection mode.
In our setup,ηr was measured to beηr = 0.3 ± 0.02 and
Λ = 0.027 · 8π

3 . By linking the atomic properties to the
detected events, we can now investigate the dependence of
the excitation probability on number of photons in a pulse and
its temporal bandwidth and shape. For example, if we are
interested in the probability that the atom is transferred into
the excited state by the pulse with certain properties, we can
extract thePe,max from fluorescence histograms. In Figure 5
we show the results of such an experiment, where the maximal
excitation probability is plotted with respect to the average
photon number in the pulse for different bandwidths.

One sees, that as the bandwidth of the pulse increase, it
takes more photons to transfer the atom to the excited state.
It is not surprising, since the temporal/frequency overlapis
decreasing, the pulse resemble more and more a cw light to
the atom. For smaller bandwidths, it is also expected that
the overlap should decrease, since frequency bandwidth of
the pulse becomes broader then naturally broadened transi-
tion bandwidth, but it is not noticeable in our data. More
shorter pulses would be needed. To see if there is any ben-
efits in exploiting pulses with different shape, one can ask if
there exists an optimal bandwidth for excitation of a two-level
atom. Then one can prepare the pulses with this bandwidth
and check the excitation probability for same photon number
in exponential or square pulse. But from equation 5 one can
see, that the coupling strength for a pulse in a coherent state
is dependent both on the envelope shape and the number of
photons. Thus, the question of the optimum pulse shape rules
out — one can always increase photon number to get different
coupling. It is however not true for the pulse being in Fock
state, since the dependence on N is not present in determina-
tion of coupling strenght [? ]. For the perfect spatial overlap
Λ = 8π/3 and Fock state with N=1, the exponential pulse
leads toPe = 0.995, while the rectangular shape gives only
Pe = 0.81 [? ]. But even if there is now good way to de-
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FIG. 6: Maximum excitation probability versus the average photon
number for different pulse shapes.

fine the optimum bandwidth, one still expects the exponential
coherent pulse to perform better then rectangular. The figure
of merit can be the number of photons required to reach the
maximalPe for pulses with similar bandwidths but different
shapes. The results are shown in Figure 6

One sees, that by using exponential pulse, the excitation
probability reaches maximum using less photons then in the
rectangular pulse. This results supports the idea that temporal
shaping of photons is important for excitation of atoms. In
our experiment the difference is not so obvious, but it is ex-
pected to become more significant if one uses pulses prepared
in Fock states and also by using larger spatial overlap with
atomic dipolar emission pattern.

However by focusing onPe,max we do not see the dynamics
of population transfer with increase of N. To observe it, we
need to determine the overall excitation probabilityPe,tot by
pulses with different N. That is, we are interested in what is
the probability to find the atom in the excited state right after
we switch off the pulse, or what isPe atΓ t = 0 (see Fig 4)?
But since our pulses are not perfect, they do not switch off
sharply and this quantity is not well defined in our histograms.
This value however defines the integral number of counts that
one obtains during the exponential decay of atomic population
which is governed byPe(t) = exp(−tΓ). Thus taking a
probability density function as−Ṗe(t) we getI know it is a
bit rough... do we elaborate further on the derivation???

Pe,tot =

∑∞
tΓ=0 Pd

3Λ
8π η∆t

(10)

In Figure 7 we show the value ofPe,tot obtained for differ-
ent bandwidths of the pulses.

The dependence ofPe,tot on N is quite strong for pulses
with smaller bandwidth. The duration of the pulses is much
less than spontaneous decay time, so the atomic population
have less time to decohere. Few Rabi cycles can happen dur-
ing the time of the pulse, so that the value ofPe,tot may differ
dramatically for each N. For larger bandwidths pulses, it takes
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more photons to form aπ-pulse, so the population in the ex-
cited state grows more steadily with increase of N.

In order to use atom-photon interface as a basis for opti-
cal switching, it is important to ensure that the atomic re-
sponse is nonlinear with respect to incoming field. Numer-
ous experiments with atoms and solid state systems in cavities
demonstrated that nonlinear behaviour of atom+cavity system
can be observed for extremely low (N ≪ 1) photon number.
In the abscence of cavities it was also shown that single dye
molecules can be used as an optical switch forN ≈ 500 [? ].
In these experiments the observation of Rabi oscillations man-
ifests the ability of switching. When the atom is transferredto
excited state by a pulse (maximum of Rabi flops), it becomes
transparrent for the subsequent pulse that is sent to it. When
the atomic population is in the ground state, the second pulse
have a high chance to be absorbed. In Figure 8 we show the
coherent dynamics of atomic population by using pulses of
15 ns bandwidth withN ≈ 1300
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CONCLUSION

We have investigated the interaction of temporaly shaped
pulses with a single trapped atom. We demonstrated that the
atomic population can be transferred to the excited state with
high probability with relatively low photon number coherent
pulse. It was shown, that the excitation of the atom is sensitive
to the envelope of the excitation pulse; the rising exponential
pulse performs better than the rectangular. Rabi oscillations
of a single atom were observed for≈ 1000 photons in a pulse.
This shows the feasibility of using a single atom as a switch
for pulses with low photon number. Nevertheless, the spa-
tial overlap of pulse mode and atomic emission mode should
be significantly enhanced to observe interaction between two
ligth pulses at single photon level. The possibility of using
Fock states instead of weak coherent pulses is also advanta-
geous, since all the effects observed in this letter should be
more profound.
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