\relax \citation{kimble:1997,kimble:2008,zoller:2001} \citation{monroe:2009} \citation{kimble:1998} \citation{reichel:2010} \citation{our_paper:2008,molecules_1,qdots_1} \citation{leuchs:2009,yimin} \citation{maiwald:2007} \citation{yimin,leuchs:2009,cohen-tann} \citation{scully} \newlabel{FirstPage}{{}{1}{}{}{}} \newlabel{intro}{{}{1}{}{}{}} \@writefile{toc}{\contentsline {section}{\numberline {}Introduction}{1}{}} \newlabel{theory}{{}{1}{}{}{}} \@writefile{toc}{\contentsline {section}{\numberline {}Theory }{1}{}} \newlabel{Pe}{{1}{1}{}{}{}} \newlabel{coupling}{{5}{1}{}{}{}} \citation{yimin} \citation{our_paper_4,zumofen} \citation{grangier} \citation{expopulse:rsi} \newlabel{Decay}{{7}{2}{}{}{}} \newlabel{setup}{{}{2}{}{}{}} \@writefile{toc}{\contentsline {section}{\numberline {}Experimental Setup}{2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Top: Setup for preparation of pulses with controllable waveform. DDS: direct digital synthesizer, BPF: stripline filter, AMP: power amplifier. Bottom: Setup for transmission and reflection measurement of light by a single atom. UHV: ultra high vacuum ($< 10^{-11}$ mbar) chamber, AL: aspheric lenses with full NA=0.55 and focal length $\mathrm {f}=4.51$\,mm, PBS: polarizing beam splitter, ND 1,2: stacks of neutral density filters, $\lambda _i'\mathrm {s}$: retardation waveplates, DM: dichroic mirrors, IF: intererence bandpass filters centered at 780 nm, FWHM = 1\,nm. }}{2}{}} \newlabel{exp_setup}{{1}{2}{}{}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {}Preparation of excitation pulses with tailored temporal envelope}{2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Evolution of probe laser frequency while passing through modulators. }}{3}{}} \newlabel{probe_freq}{{2}{3}{}{}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {}Photodetection scheme}{3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Rectangular and rising exponential excitation pulses. Histograms show the number of detected events $\mathrm {N_d}$ in 1\,ns time bin versus time expressed in units of natural decay rate $\Gamma \,=\,26.3\,\mathrm {ns}$ of $5\mathrm {P}_{{\begingroup 3\endgroup \over 2}}|{\mathrm {F}=3}\delimiter "526930B $ in $^{87}\mathrm {Rb}$. (Left) Rectangular shape pulse with temporal width of 15\,ns and calculated photon number $\mathrm {N}\,=\,104\pm \,5$. (Right) Rising exponential pulse with characteristic time $\tau =15\,\mathrm {ns}$ and photon number $\mathrm {N}\,=\,110\pm \,6$. Green line is the fit according to equation\nobreakspace {}8{}{}{}\hbox {}. The errorbars are due to Poissonian counting statistics. }}{3}{}} \newlabel{example_pulses}{{3}{3}{}{}{}} \@writefile{toc}{\contentsline {section}{\numberline {}Measurement of pulse parameters}{3}{}} \citation{yimin} \citation{yimin} \citation{yimin} \citation{yimin} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Histogram of atomic fluorescence photocounts (blue trace) and of excitation pulse (red trace). Initially, when the pulse is ON, the fluorescence rate is determined by coupling to the field in the pulse. When the pulse is finished, the atomic population and thus fluorescence decays exponentially with decay rate $\Gamma $. The errorbars are due to Poissonian counting statistics }}{4}{}} \newlabel{fluor_exp}{{4}{4}{}{}{}} \newlabel{prob_det}{{8}{4}{}{}{}} \@writefile{toc}{\contentsline {section}{\numberline {}Results}{4}{}} \newlabel{exc_prob_vs_rate}{{9}{4}{}{}{}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Maximal excitation probability versus the average photon number in the pulse. Four plots correspond to different temporal banwidths. Theory curves were obtained by numerically solving differential equations for time-dependent operators\nobreakspace {}\cite {yimin}. }}{4}{}} \newlabel{sat_curves}{{5}{4}{}{}{}} \citation{molecule_transistor} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Maximum excitation probability versus the average photon number for different pulse shapes. }}{5}{}} \newlabel{shape_dep}{{6}{5}{}{}{}} \newlabel{total_exc_prob}{{10}{5}{}{}{}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Total excitation probability versus the average photon number in the pulse. Four plots correspond to different temporal bandwidths. }}{5}{}} \newlabel{exc_prob_total}{{7}{5}{}{}{}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Excitation probability versus the time. Rabi oscillations are clearly visible. }}{5}{}} \newlabel{rabi_flops}{{8}{5}{}{}{}} \bibcite{cirac:1997}{{1}{1997}{{Cirac et~al.}}{{Cirac, Zoller, Kimble, and Mabuchi}}} \bibcite{duan:2001}{{2}{2001}{{Duan et~al.}}{{Duan, Lukin, Cirac, and Zoller}}} \bibcite{rempe:2000}{{3}{2000}{{Pinkse et~al.}}{{Pinkse, Fischer, Mauncz, and Rempe}}} \bibcite{kimble:2007}{{4}{2007}{{Boozer et~al.}}{{Boozer, Boca, Miller, Northup, and Kimble}}} \bibcite{mk:2009}{{5}{2009}{{Tey et~al.}}{{Tey, Maslennikov, Liew, Aljunid, Huber, Chng, Chen, Scarani, and Kurtsiefer}}} \bibcite{zumofen:2008}{{6}{2008}{{Zumofen et~al.}}{{Zumofen, Mojarad, Sandoghdar, and Agio}}} \bibcite{imamoglu:2007}{{7}{2007}{{Vamivakas et~al.}}{{Vamivakas, Atature, Dreiser, Yilmaz, Badolato, Swan, Goldberg, Imamoglu, and Unlu}}} \bibcite{wrigge:2008}{{8}{2008}{{Wrigge et~al.}}{{Wrigge, Gerhardt, Hwang, Zumofen, and Sangoghdar}}} \bibcite{our_paper}{{9}{2008}{{Tey et~al.}}{{Tey, Chen, Aljunid, Chng, Huber, Maslennikov, and Kurtsiefer}}} \bibcite{walls:1990}{{10}{1990}{{Savage et~al.}}{{Savage, Braunstein, and Walls}}} \bibcite{turchette:1995}{{11}{1995}{{Turchette et~al.}}{{Turchette, Hood, Lange, Mabuchi, and Kimble}}} \bibcite{fushman:2008}{{12}{2008}{{Fushman et~al.}}{{Fushman, Englund, Faraon, Stoltz, Petroff, and Vuckovic}}} \bibcite{zibrov:1996}{{13}{1996}{{Zibrov et~al.}}{{Zibrov, Lukin, Hollberg, Nikonov, Scully, Robinson, and Velichansky}}} \bibcite{zumofen:2009}{{14}{2009}{{Zumofen et~al.}}{{Zumofen, Mojarad, and Agio}}} \bibcite{schlosser:2002}{{15}{2002}{{Schlosser et~al.}}{{Schlosser, Reymond, and Grangier}}} \bibcite{wilson:1997}{{16}{1997}{{Juskaitis and Wilson}}{{}}} \bibcite{quabis:2001}{{17}{2001}{{Quabis et~al.}}{{Quabis, Dorn, Eberler, O., and Leuchs}}} \bibcite{rhodes:2002}{{18}{2002}{{Rhodes et~al.}}{{Rhodes, Nugent, and Roberts}}} \bibcite{weber:2006}{{19}{2006}{{Weber et~al.}}{{Weber, Volz, Saucke, Kurtsiefer, and Weinfurter}}} \bibcite{tuchendler:2008}{{20}{2008}{{Tuchendler et~al.}}{{Tuchendler, Lance, Browaeys, Sortais, and Grangier}}} \bibcite{chu:1992}{{21}{1992}{{Kasevich and Chu}}{{}}} \bibcite{chu:1996}{{22}{1996}{{Lee et~al.}}{{Lee, Adams, Kasevich, and Chu}}} \global \chardef \firstnote@num22\relax \bibstyle{apsrev} \newlabel{LastPage}{{}{5}} \@writefile{toc}{\contentsline {section}{\numberline {}Conclusion}{6}{}} \@writefile{toc}{\contentsline {section}{\numberline {}Acknowledgment}{6}{}} \@writefile{toc}{\contentsline {section}{\numberline {}References}{6}{}} \newlabel{LastBibItem}{{22}{6}{}{}{}}