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The detailed calculation of an excitation probability Pe

of a two-level atom by a travelling light pulse is desctibed
in details in [1–3]. In particular, Pe(t) is determined by
dynamical coupling strength g(t) which is given by [1]

g(t) =
√

Γp N ξ(t). (1)

Here, N is the average number of photons in a pulse
with a coherent statistics, ξ(t) is the normailzed tempo-
ral envelope mode function and Γp is the decay rate of
an atom into a spatial mode subtended by an excitation
pulse. Since in the theoretical description of experiments
described below, Γp will be the only parameter, we briefly
outline its evaluation for experimental settings.
We start with the expression of the electric field oper-

ator
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(2)
where ωk = c|k|, c is the vacuum speed of light,

ǫ0 is the permittivity of the vacuum, uk,λ are spatial
mode functions, and ǫk,λ are unit polarization vectors
λ = 1, 2. A two-level atom, represented by a dipole
operator d̂ = |d|σ̂x,y,zed interacts with a field at its
location ra with a coupling strength (dipole matrix el-
ement, Rabi frequency, interaction Hamiltonian, etc...)

g(ra) = (d̂ · Ê+)

g(ra) = |d|
√
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(2π)3 2h̄ǫ0
uk,λ(ed · ǫk,λ), (3)

where ed is the unit dipole vector defining atomic tran-
sition symmetry. Using Wigner-Weisskopf approxima-
tion, one arrives to spontaneous decay rate Γp of an atom
into pulse mode [4]

Γp = 2π
∑

λ

∫

d3k |gk,λ(ra)|2 δ(ωk − ωa). (4)

Substitution of Eq. 3 into Eq. 4 and employing spher-
ical coordinates yields
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Here Γ is the overall spontaneous decay rate [3]. The
overlap integral Λ ∈

[

0, 8π
3

]

shows the overlap between
the spatial mode subtended by a pulse and atomic dipolar
emission modes. Evaluation of this integral for different

input mode functions was done in several recent works [5–
7]. Since in our experiment the spatial mode function
of the excitation pulse is a strongly focused Gaussian,
we will follow results of work [7] to express the overlap
integral in terms of the focusing strength u := wL/f
defined through input beam waist wL and focal distance
of the coupling lens f
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For our experimental value u = 0.22, Γp ≈ 0.03Γ and
coupling strength of equation 1 becomes

g(t) =
√
0.03ΓN ξ(t). (7)
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