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Abstract. We investigate the interaction between a single atom and optical pulses

with a controlled temporal envelope. By switching the temporal shape from rising

exponential to square profile, we show that the rising exponential envelope leads

to higher excitation probability for a fixed photon number. The atomic transition

saturates for ≈ 50 photons in a pulse. Rabi oscillations with 100MHz frequency are

visible in detected fluorescence for excitations powers of ≈ 100 photons in 5 ns pulse.

PACS numbers: 42.50Ct, 42.50Ex, 42.25Bs
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1. Introduction

Quantum networks are viewed as one of the essential developments in quantum

information science [1, 2, 3]. In most scenarios, the resource of the quantum network is

entanglement that is shared between the network nodes and that is distributed through

quantum channels by carriers. Naturally, one can think of atomic two-level systems

as nodes, and single photons as carriers. Boosting the efficiency of on-site interactions

between photons and atoms and scaling quantum networks to many sites is one of the

most pursued tasks in experimental quantum information [4].

The exchange of information between atoms and photons is done by fundamental

processes of emission and absorption. It is thus highly desirable to achieve an excitation

probability of an atom by a photon close to unity. It is common to solve this problem in

a context of cavity QED, where the field strength of single photons at the location of the

atom is dramatically increased by using optical cavities with small mode volumes [5].

However complicated highly reflective dielectric coatings are required to decouple the

cavity from environmental losses which compromises the scaling of such system to many

node operations. To relax the coating requirements, the mode volume has to be further

decreased and several experimental efforts target this issue [6], It was also demonstrated

that placing an atomic 2-level system at the focus of a simple lens also leads to reasonably

strong interaction [7, 8, 9]. In this case, the emission and absorption of photons are not

affected by presence of cavities and their efficiency depends on the overlap between

atomic and photonic spatial and frequency modes. Considering only dipole allowed

transitions and lifetime limited spectral absorption profile, it can be shown [10, 11]

that near perfect excitation probability can be achieved with a wavepacket that has

an exponentially rising temporal envelope with a characteristic time on the order of

the decay time of the excited atomic state. The difference in excitation probability

between this pulse and pulses with other envelopes depends on the spatial overlap and

expected to be maximal when the spatial distribution of incoming field matches the

dipolar pattern of atomic emission [12].

In this letter we investigate the effect of temporal shaping of light pulses on the

excitation probability of a closed cycling transition in single 87Rb atom.

2. Experimental Setup

The experimental setup is schematically shown in Figure 1.

The atom is trapped at the focus of two confocally positioned aspheric lenses in a

Far-Off Resonant Optical Dipole Trap (FORT). The FORT is loaded from a magneto-

optical trap (MOT) consisting of ≈ 104 atoms. Due to collisional blockade one can

achieve a subpoissonian atom distribution with either zero or one atom in a trap at

any instance of time [13]. The probe beam defines a light mode that is coupled to the

atom and is delivered from a single mode optical fiber. This fixes a spatial mode to be

Gaussian with a characterstic waist of wL = 1mm at the focussing lens. If no atom is
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Figure 1. Top: Setup for preparation of pulses with controllable waveform. DDS:

direct digital synthesizer, BPF: stripline filter, AMP: power amplifier. Bottom: Setup

for transmission and reflection measurement of light by a single atom. UHV: ultra high

vacuum (< 10−11 mbar) chamber, AL: aspheric lenses with full NA=0.55 and focal

length f = 4.51mm, PBS: polarizing beam splitter, ND 1,2: stacks of neutral density

filters, λ′

i
s: retardation waveplates, DM: dichroic mirrors, IF: intererence bandpass

filters centered at 780 nm, FWHM = 1nm.

present in the trap, the second lens recollimates back the probe beam, then it passses

through several filters and finally is coupled to another single mode fiber with 72%

efficiency (point B to point C on Figure 1). The other end of the fiber is attached to

an avalanche photodiode operating in photon counting mode. Atomic fluorescence from

MOT beam is collected into a single mode fiber that is coupled to APD2 and gives us a

trigger signal, indicating that the atom has loaded into the FORT. After 5 ms of molasses

cooling we optically pump the atom to 5S 1

2

|F = 2,mF = −2〉 with circularly polarized

probe light for 10 ms. Then we send a train of 100 optical pulses with varying temporal

shape, photon number and characteristic time to the atom. The optical frequency fopt
of the pulse is resonant to 5S 1

2

|F = 2,mF = −2〉 → 5P 3

2

|F = 3,mF = −3〉. This value

of the frequency is obtained by independent measurement of probe’s transmission with

cw light. It includes the shift of Zeeman sublevels due to the circularly polarized trap

field. The repetition rate of the sequence depends mostly on the dead time of detectors

and in our case was 83.3 kHz.

After probing, we check if the atom escapes the trap by shining molasses beams

for 20-30 ms. If atom is still inside, the probing sequence is repeated. Once the

atom escapes, the same sequence of pulses is recorded for 3 seconds and serves as
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Figure 2. Evolution of probe laser frequency while passing through modulators.

the reference/background measurement. Since it is possible to use both forward and

backward detection directions with respect to the probe propagation, we can study

both the transmission and reflection properties of the probe beam by a single atom.

Two single photon avalanche photodiodes were used to detect transmitted/reflected

light and the temporal histogram of detection events was obtained with a timestamp

unit. We triggered the timestamp such that one could process the data differentiating

events when the atom was present or absent in the trap. In the following section we

describe the pulse preparation and detection scheme in more detail.

2.1. Preparation of excitation pulses with tailored temporal envelope

The scheme for generating optical pulses with varying temproal overlap is shown in

Figure 1a. The detailed description of its performance is given elsewere [14]. In brief,

an electrical pulse with a defined envelope is mixed with an RF signal and fed into the

fast EOM (20 GHz bandwidth). We used a home-built circuit where we exploited the

relation between base voltage and collector current of a fast RF transistor to generate

exponential pulses. The electrical pulse can be switched on or off by an external signal in

standard logic. We also used the common rectangular envelope which was obtained from

a standard NIM pulse from a pattern generator. The probe laser in initially locked to

5S 1

2

|F = 3〉 → 5P 3

2

|F = 4〉in 85Rb. The cw probe light is first sent through an acousto

optic modulator (AOM) that is used as a primary switch for the optical pulse. The

frequency of the probe light is then increased by twice the AOM frequency fAOM (see

Figure 2).

The optical power extinction after the doubly passed AOM is around 50dB. Then,

the chopped probe is sent through an EOM where it acquires frequency sidebands which

are separated from a carrier frequency fc by a frequency of the RF wave fRF. We

chose fRF = 1.5GHz such that the first red sideband frequency is near resonance of the

cycling transition 5S 1

2

|F = 2〉 → 5P 3

2

|F = 3〉 in 87Rb. By fine tuning of fAOM we can

find the resonance frequency fopt. In the low modulation regime, the optical power in

the first sidebands is almost linear with respect to the RF modulation power. Thus,

the modulation temporal envelope is mapped into the sidebands directly. To filter the

first red sideband from the carrier we use three consecutive optical resonators with
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FWHM linewidth of ≈ 460MHz that are temperature tuned to transmit the sideband

frequency. In the end we achieve ≈ 60 dB attenuation of carrier power. Then the pulses

were coupled to single-mode fiber and delivered to the atom.

The number of photons in each pulse was varied by inserting pre-calibrated neutral

density filters (ND1 at Figure 1) into the beam. The actual number of photons

together with characteristic pulse time was measured by fitting the histogram of the

photodetection events.

2.2. Photodetection scheme

This histogram was obtained by registering the arrival time of the photodetection events

in transmission and reflection arms from two APDs. The APD in the reflection arm is

an actively quenched Perkin Elmer single photon counting module with dead time of ≈
20 ns and quantum efficiency of 50%. The other APD is a homemade passively quenched

diode with a dead time of ≈ 3µ s and quantum efficiency of 55%. The timestamp unit

is a 4 channel time recorder with two channels used as triggers and two channels receive

signals from APD’s. The deadtime of the timestamp after each registered event is 120 ns

and temporal resolution is ≈ 450 ps. To compensate for the deadtime of the timestamp,

a cable delay of 300 ns was added to the APD 1 path. The histogram is obtained

by arranging the detection time into bins with temporal widths ∆tb and plotting the

probability to find a click in each bin per each trigger pulse.

3. Theoretical aspects

We are interested in determining the excitation probability Pe of a two-level atom by

a travelling light pulse. This probability is given by an expectation value of a Pauli

operator σ̂z = |e〉〈e| − |g〉〈g| [11, 10, 15]

Pe(t) =
1

2
(〈Ψ0|σ̂z|Ψ0〉+ 1) , (1)

where |Ψ0〉 = |g〉|Φp〉|vac〉 is the initital state of atom+field system. We thus

start with atom being in the ground state |g〉, a field is given by state |Φp〉 and the

environment is initially in the vacuum state |vac〉. In our experiments, the field is

prepared in a coherent state wavepacket

|Φp〉 = exp
(

αÂ† − α∗Â
)

|0〉, (2)

with average photon number N

N = 〈Φp|Â†Â|Φp〉 = |α|2. (3)

Here Â† is the wavepacket operator that is defined such that when it acts on vacuum,

the result is a single photon Fock state wavepacket with spectral distribution function

f(ωk) and spatial mode function uk,λ(r) as in [16]

Â†|0〉 =
∑

λ

∫

d3ku∗
k,λ(r)f(ωk)â

†
k,λ|0〉 = |1〉. (4)
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Upon interaction of such a field with an atom, one gets the expression for the

dynamical coupling strength g(t)

g(t) =
√

Γp N ξ(t), (5)

where

ξ(t) =
1√
2π

∫

dω f(ωk) e
−i(ω−ω0)t (6)

is the Fourier transform of the wavepacket spectral distribution function (temporal

envelope) and Γp is the decay rate of the atom into the pulse mode. It is determined

by the spatial overlap of the pulse mode with the dipolar emission pattern and for a

transition with dipole matrix element d and frequency ωa, is given by

Γp =
1

2(2π)2

(ωa

c

)3 d2

~ǫ0
Λ. (7)

Here Λ =
[

0, 8π
3

]

determines the solid angle subtended by a pulse mode. For Λ = 8π
3
,

Γp = Γ is the total spontaneous emission rate, obtained within Wigner-Weisskopf theory.

The excitation probability of equation 1 is obtained by solving a system of coupled

differential equations for time-dependent operators [11], in which the coupling strength

g(t) enters as a parameter. Do we show these equations!!??. Thus, excitation

probability of an atom interacting with a coherent light wavepacket depends on a solid

angle, subtended by a spatial pulse mode Λ (spatial overlap), temporal bandwidth of

the pulse and its shape ξ(t) (frequency-temporal overlap) and number of photons in a

pulse N. We assumed that polarization of the pulse was matched to the direction of

atomic dipole in equation 7.

In our experiment, the spatial overlap is fixed by a waist of the Gaussian beam

wL and the focal length of aspheric lens f. In principle, the overlap can be obtained,

by measuring the reflection of coherent cw light from a single atom [17, 18]. Knowing

the amount of photons scattered by the atom (from the extinction measurement with

APD 1 at Figure 2) one just detects the amount of clicks in the reflection arm (APD 2)

and thus obtains the collection efficiency by dividing the click detection rate by photon

scattering rate. In our case, we measured ≈ 2.7%. collection efficiency. This fixes our

Λ at 0.027 · 8π
3
.

4. Measurement of pulse parameters

In our experiment we investigate interactions of the atom with pulses of two different

shapes: rectangular and rising exponential. The envelope shape is defined as

ξrect(t) =

{ √
Ω : for 0 ≤ t ≤ 1

Ω

0 : else
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Figure 3. Rectangular and rising exponential excitation pulses. Histograms show the

number of detected events Nd in 1 ns time bin versus time expressed in units of natural

decay rate Γ = 26.3 ns of 5P 3

2

|F = 3〉 in 87Rb. (Left) Rectangular shape pulse with

temporal width of 15 ns and calculated photon number N = 104± 5. (Right) Rising

exponential pulse with characteristic time τ = 15ns and photon number N = 110± 6.

Green line is the fit according to equation 8. The errorbars are due to Poissonian

counting statistics.

for a rectangular pulse and

ξexp(t) =

{ √
Ωexp

(

Ω
2
t
)

: for 0 ≤ t

0 : for t > 0

for a rising exponential pulse. Here Ω is the frequency bandwidth of the pulse

that can be expressed in terms of overall spontaneous emission rate Γ. To extract the

photon number and temporal width of excitation pulses, we acquire the histogram of

photocounts with no atom in trap in the forward direction with APD 2 see Figure 3.

The photon number is obtained by summing all detected events Nd,i in time bins

∆ ti per number of triggers NT and dividing the obtained number by losses in beam

path N = 1
ηlηND2

∑

i

Nd,i

NT

. The losses were measured to be ηl = 0.3 ± 0.02 and include

quantum efficiency of APD, coupling efficiency to single mode fiber and reflection losses

from all optical components. Attenuation due to ND 2 stack of filters is measured to

0.5% uncertainty and varies from 2.5–5.1 dB. The bandwidth of rectangular pulse was

directly inferred from a histogram and for exponential pulse, we used a following fit

function to obtain its characteristic time τ

Ndet(t) = ηlηND2
Nexp(

t− t0
τ

)× exp(
∆ t

τ
− 1). (8)

Here the first exponential term reflects the envelope function and the second is due

to Poissonian distribution of photocounts. Note that the characterization of the pulses

was done immediately after measurement of atomic response, during the background

measurement right after atom left the trap. We are thus confident, that pulse parameters

did not significantly change during interaction with atom.
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Figure 4. Histogram of atomic fluorescence photocounts (blue trace) and of excitation

pulse (red trace). Initially, when the pulse is ON, the fluorescence rate is determined

by coupling to the field in the pulse. When the pulse is finished, the atomic population

and thus fluorescence decays exponentially with decay rate Γ. The errorbars are due

to Poissonian counting statistics

5. Results

We quantify the interaction by measuring the excitation probability of the atom by

detecting fluorescent photons in backward direction with APD 1. The temporal

evolution of detected photocounts is direcly related to the expectation value of atomic

operators and allows us to determine the occupancy of the excited state, that is the

excitation probability Pe. In Figure 4 we show the histogram of photocounts obtained

by exciting the atom with a rising exponential pulse of Figure 3

The excitation probability Pe is linked to the probability Pd of detecting an event

in time bin width ∆ t per trigger as

Pd =
Nd,i

NT

= PeΓ∆t ηr
3Λ

8π
(9)

where PeΓ is the rate at which the atom scatters photons outside the, ηr stays for the

losses in APD 1 arm and 3Λ
8π

is the fraction of the solid angle subtended by the detection

mode. In our setup, ηr was measured to be ηr = 0.3 ± 0.02 and Λ = 0.027 · 8π
3
.

By linking the atomic properties to the detected events, we can now investigate the

dependence of the excitation probability on number of photons in a pulse and its

temporal bandwidth and shape. For example, if we are interested in the probability
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Figure 5. Maximal excitation probability versus the average photon number

in the pulse. Four plots correspond to different temporal banwidths. Theory

curves were obtained by numerically solving differential equations for time-dependent

operators [11].

that the atom is transferred into the excited state by the pulse with certain properties,

we can extract the Pe,max from fluorescence histograms. In Figure 5 we show the results

of such an experiment, where the maximal excitation probability is plotted with respect

to the average photon number in the pulse for different bandwidths.

One sees, that as the bandwidth of the pulse increase, it takes more photons to

transfer the atom to the excited state. It is not surprising, since the temporal/frequency

overlap is decreasing, the pulse resemble more and more a cw light to the atom. For

smaller bandwidths, it is also expected that the overlap should decrease, since frequency

bandwidth of the pulse becomes broader then naturally broadened transition bandwidth,

but it is not noticeable in our data. More shorter pulses would be needed. To see if there

is any benefits in exploiting pulses with different shape, one can ask if there exists an

optimal bandwidth for excitation of a two-level atom. Then one can prepare the pulses

with this bandwidth and check the excitation probability for same photon number in

exponential or square pulse. But from equation 5 one can see, that the coupling strength

for a pulse in a coherent state is dependent both on the envelope shape and the number

of photons. Thus, the question of the optimum pulse shape rules out — one can always

increase photon number to get different coupling. It is however not true for the pulse

being in Fock state, since the dependence on N is not present in determination of

coupling strenght [11]. For the perfect spatial overlap Λ = 8π/3 and Fock state with
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Figure 6. Maximum excitation probability versus the average photon number for

different pulse shapes.

N=1, the exponential pulse leads to Pe = 0.995, while the rectangular shape gives only

Pe = 0.81 [11]. But even if there is now good way to define the optimum bandwidth,

one still expects the exponential coherent pulse to perform better then rectangular. The

figure of merit can be the number of photons required to reach the maximal Pe for pulses

with similar bandwidths but different shapes. The results are shown in Figure 6

One sees, that by using exponential pulse, the excitation probability reaches

maximum using less photons then in the rectangular pulse. This results supports the

idea that temporal shaping of photons is important for excitation of atoms. In our

experiment the difference is not so obvious, but it is expected to become more significant

if one uses pulses prepared in Fock states and also by using larger spatial overlap with

atomic dipolar emission pattern.

However by focusing on Pe,max we do not see the dynamics of population transfer

with increase of N. To observe it, we need to determine the overall excitation probability

Pe,tot by pulses with different N. That is, we are interested in what is the probability

to find the atom in the excited state right after we switch off the pulse, or what is Pe

at Γ t = 0 (see Fig 4)? But since our pulses are not perfect, they do not switch off

sharply and this quantity is not well defined in our histograms. This value however

defines the integral number of counts that one obtains during the exponential decay of

atomic population which is governed by Pe(t) = exp(−tΓ). Thus taking a probability

density function as −Ṗe(t) we get I know it is a bit rough... do we elaborate
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Figure 7. Total excitation probability versus the average photon number in the pulse.

Four plots correspond to different temporal bandwidths.

further on the derivation???

Pe,tot =

∑∞

tΓ=0 Pd

3Λ
8π
η∆t

(10)

In Figure 7 we show the value of Pe,tot obtained for different bandwidths of the

pulses.

The dependence of Pe,tot on N is quite strong for pulses with smaller bandwidth.

The duration of the pulses is much less than spontaneous decay time, so the atomic

population have less time to decohere. Few Rabi cycles can happen during the time

of the pulse, so that the value of Pe,tot may differ dramatically for each N. For larger

bandwidths pulses, it takes more photons to form a π-pulse, so the population in the

excited state grows more steadily with increase of N.

In order to use atom-photon interface as a basis for optical switching, it is important

to ensure that the atomic response is nonlinear with respect to incoming field. Numerous

experiments with atoms and solid state systems in cavities demonstrated that nonlinear

behaviour of atom+cavity system can be observed for extremely low (N ≪ 1) photon

number. In the abscence of cavities it was also shown that single dye molecules can be

used as an optical switch for N ≈ 500 [19]. In these experiments the observation of Rabi

oscillations manifests the ability of switching. When the atom is transferred to excited

state by a pulse (maximum of Rabi flops), it becomes transparrent for the subsequent

pulse that is sent to it. When the atomic population is in the ground state, the second
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pulse have a high chance to be absorbed. In Figure 8 we show the coherent dynamics

of atomic population by using pulses of 15 ns bandwidth with N ≈ 1300

6. Conclusion

We have investigated the interaction of temporaly shaped pulses with a single trapped

atom. We demonstrated that the atomic population can be transferred to the excited

state with high probability with relatively low photon number coherent pulse. It was

shown, that the excitation of the atom is sensitive to the envelope of the excitation pulse;

the rising exponential pulse performs better than the rectangular. Rabi oscillations of

a single atom were observed for ≈ 1000 photons in a pulse. This shows the feasibility

of using a single atom as a switch for pulses with low photon number. Nevertheless,

the spatial overlap of pulse mode and atomic emission mode should be significantly

enhanced to observe interaction between two ligth pulses at single photon level. The

possibility of using Fock states instead of weak coherent pulses is also advantageous,

since all the effects observed in this letter should be more profound.
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