
A thesis for the Degree of Bachelor of Science (Hons)

Optical Autocorrelation using Non-Linearity

in a Simple Photodiode

Syed Abdullah Aljunid

Supervisor: Assistant Professor Antia Lamas-Linares

Department of Physics

National University of Singapore

2006/2007



Abstract

We report on the development and characterisation of an intensity autocor-

relator for measuring short femtosecond pulses using non-linearity of a light

emitting diode (led). In this thesis, we concentrate in particular into the

requirements for an intensity autocorrelator, especially the non-linear detec-

tion process and why an LED makes a reasonable choice. An autocorrelator

using a modified Mach-Zender interferometer setup with an LED as a non-

linear detector was built and used to measure pulses from a mode-locked

laser. Results of the measurements are presented for pulses of various widths

from 130 fs up to 5.7 ps. Dispersion through an optical fiber is also examined

and further possibilities suggested.
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Introduction

The field of ultrashort sciences is one that is getting very much attention in

recent years. Many fundamental biological, chemical and physical processes

occur in a time scale that is much less than that we are used to in everyday

life. For example, photosynthesis, protein-folding and molecular vibrations

all occur on a femtosecond time scale.

If we want to measure such processes in time, a much shorter event is

needed so that we can resolve those processes temporally, much like how a

strobe light is used in split-second photography. The ultrashort event re-

quired can be in the form of light pulses as short as femtoseconds or even

attoseconds long in time. These ultrashort laser pulses can be readily gener-

ated in most labs using commercial mode-locked lasers together with a pulse

compressor. Besides the temporal resolution, these pulses also have high in-

tensities. A 100 fs pulse with 1 mJ of energy can yield intensities as high as

1016 W/cm2. At such intensities, non-linear effects become more apparent

which then leads to easier observations of such phenomena.

To determine accurately how short the generated pulses are, is not a

trivial matter. We cannot measure them directly since there are no shorter

events readily available, and even if there is, the problem just reduces to

measuring that shorter event. Hence we will use the pulse to measure itself

in a technique called autocorrelation. We shall also see that for an intensity
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autocorrelation to be implemented experimentally a non-linear medium, such

as a non-linear crystal, is required. It has been shown in [1,2] that semicon-

ductor photodiodes and light emitting diodes can be also used for non-linear

detection of light.

The advantages of using semiconductor over non-linear crystals, besides

its cheap price, is that we do not need to fulfill phase-matching conditions.

Also there are no polarisation requirements by the semiconductor detectors.

Both polarisation and phase-matching however, are important considerations

in non-linear crystals. This can allow for a larger bandwidth of detectable

non-linear effects, which is usually limited by the strict phase-matching re-

quirements in non-linear crystals.

The light emitting diode will be looked at for its suitability and its design

carefully examined. Since it is not designed for light detection, there are

several challenges that we will face.

But first, we will begin by looking at how an autocorrelator works, that

is, the theory of autocorrelation and how it can be implemented optically.

Also , we will discuss how the actual pulse width is obtained from an auto-

correlation.
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Chapter 1

Autocorrelator

An autocorrelator is a device that compares a signal with a displaced copy

itself. The output is the autocorrelation of the input signal, or some function

of that signal.

1.1 Theory of autocorrelation

Mathematically, the cross-correlation of two complex square integrable func-

tions, f(x) and g(x) is defined as,

(f ? g)(x) ≡

∫

∞

−∞

f ∗(t)g(x + t) dt, (1.1)

where f ∗ is the complex conjugate of f . It is a measure of how similar

the two functions are for different values of x. Completely uncorrelated

functions will have a cross-correlation of zero for all x. On the other extreme,

if g(x) = f(x), then it just becomes a cross-correlation of f with itself, also

called the autocorrelation of f , Af (x). The autocorrelation of a function
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describe how similar a function is with a time-delayed copy itself.

Af (x) =

∫

∞

−∞

f ∗(t)f(x + t) dt

=

∫

∞

−∞

f ∗(t − x)f(t) dt (1.2)

The autocorrelation of a function has several properties which we will be

using later on and they are:

• It has a symmetry.

• There is a maximum at x = 0.

• If f(x) is a periodic function, then Af (x) is also periodic with the same

period.

• The autocorrelation of the sum of two functions, Ah(x), where h(x) =

f(x) + g(x), is the sum of the two autocorrelations separately plus the

cross-correlations of the two function.

An autocorrelation always has some symmetry. For real functions, where

f ∗ = f , the symmetry is about x = 0. This can be seen easily from equa-

tion 1.2.

Af (−x) =

∫

∞

−∞

f(t − (−x))f(t) dt =

∫

∞

−∞

f(t + x)f(t) dt = Af (x).

As such Af (x) is an even function.

At x = 0, we have

Af (x = 0) =

∫

∞

−∞

|f(t)|2 dt.

This is the maximum possible value of for Af (x) as a result of the Cauchy-

Schwarz inequality. Hence for any autocorrelation we always have the maxi-

mum at x = 0.
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If f(x) is periodic, such that,

f(x + 2nπx0) = f(x)

where x0 is the period or wavelength of the function and n is a positive

integer, the autocorrelation will also be periodic with the form,

Af (x + 2nπx0) = Af (x).

For a function h(x) = f(x) + g(x), its autocorrelation will be,

Ah(x) =

∫

∞

−∞

h∗(t − x)h(t) dt

=

∫

∞

−∞

[f ∗(t − x) + g∗(t − x)] [f(t) + g(t)] dt

=

∫

∞

−∞

f ∗(t − x)f(t) + g∗(t − x)g(t) + f ∗(t − x)g(t) + g∗(t − x)f(t) dt

= Af (x) + Ag(x) + (f ? g)(x) + (g ? f)(x),

which is the sum of its components individual autocorrelation and cross-

correlation terms. If the f and g are completely uncorrelated, their cross-

correlation would be zero and Ah(x) reduces to,

Ah(x) = Af (x) + Ag(x).

The autocorrelation discards any phase term and returns only the mag-

nitude squared of the function, evident in the f(t)f ∗(t + x) term. As such,

it is a non-reversible operation. It means that for a given autocorrelation,

without any additional information, we cannot infer the original function.

1.2 Electric field

Light is described by the electric field, E(r, t), which is a function of both

space and time. Since we are interested in its temporal properties, we simply
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consider its time dependence. In most practical cases, it is convenient to

write the electric field as the product of an amplitude function and a phase

term. If the complex notation is employed, it can now be written as

E(t) = E(t)ei(ω0+φ(t)) + c.c. (1.3)

where c.c. denotes complex conjugate, ω0 is the carrier frequency of light,

E(t) is the electric field amplitude of the light and φ(t) its time dependent

phases. If the field envelope and time dependent phase terms are slow varying

functions compared with the period of the carrier frequency, we can describe

the light satisfactorily by these two terms. Intensity of the electric field is

I(t) =
1

2
ε0cnE(t)E∗(t) ∝ |E(t)|2

where the physical constants are usually ignored. For a pulse of light, the

pulse duration, τp, is usually taken as the full width half maximum (fwhm)

of the intensity profile.

The electric field can also be written in the frequency domain where its

related by the Fourier transform. In the frequency domain,

E(Ω) = E(Ω)eiΦ(Ω)

where we don’t write its complex conjugate terms anymore. The Fourier

transform of the intensity is the spectral intensity,

S(Ω) ∝ |E(Ω)|2

Similar to the pulse duration, the spectral width, ∆ωp, is the fwhm of the

spectral intensity profile. The pulse duration-bandwidth product is

τp∆ωp ≥ 2πK (1.4)
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Field Intensity τp Spectral ∆ωp K = τp∆ωp/2π

envelope profile (fwhm) profile (fwhm)

Gaussian e−2t2 1.177 e−(πΩ)2/2 2.355 0.441

Sech sech2(t) 1.763 sech2(πΩ/2) 1.122 0.315

Square
1 for |t| ≤ 1

2

0 elsewhere
1 sinc2(Ω) 2.78 0.443

Table 1.1: Examples of standard pulse profiles [3, 4].

where K is a numerical constant depending on the actual pulse shape. Values

for common field envelopes are given in table 1.1. For a pulse where there are

no phase variations, called a bandwidth limited or Fourier transform limited

pulse, the expression is reduced to an equality.

The electric field obeys the superposition principle,

E(t) = E1(t) + E2(t). (1.5)

This will be exploited later on to get terms proportional to E1 ·E2. There

are many more properties of the electric field, but this is sufficient to describe

what we’ll be doing.

Field envelopes

For a pulse of light, it is necessary that the electric field be non-zero only for

a limited time and be zero at other times. In essence, the amplitude term in

equation 1.3 must have a form that satisfy this condition. Since, E envelopes

the oscillating electric field, it is also referred to as the field envelope.
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Typical analytical envelope functions are the Gaussian and the hyperbolic

secant, which arises when solving Maxwell’s equations with a particular set

of boundary conditions. In a mode-locked laser, which is the system that

we’ll be using to perform our experiments, it was shown [5] that a stationary

solution has the form,

E(t) ∝ sech(t).

This solution describes a stable pulse in an optical soliton that does not

experience any changes to its electric field amplitude or phase.

1.3 Optical Autocorrelation

There are various forms of autocorrelation in optics depending on what is

being measured. Each of these autocorrelations can be realised experimen-

tally by using suitable optical elements. The simplest optical autocorrelation

is that of the field autocorrelation where the electric field, E, is what we are

interested in. The electric field is a function of time and so we write its

autocorrelation as,

A(1)(τ) =

∫

∞

−∞

E(t)E∗(t − τ) dt

where τ is the delay introduced. A field autocorrelation is also referred to

as a first order autocorrelation. It is related to the spectrum by a Fourier

transform

S(Ω) = F
{

A(1)
}

The intensity autocorrelation, Ac(τ), can also be measured experimen-

tally.

Ac(τ) =

∫

∞

−∞

I(t)I(t − τ) dt = A(2)(τ) (1.6)

11



The intensity autocorrelation is commonly referred to as the second order

autocorrelation. Higher order correlations for intensity are also possible in

which case the definition differs slightly,

A(n)(τ) =

∫

∞

−∞

I(t)In(t − τ) dt.

For a reasonably peaked function, and a large enough n, In behaves like a

delta function, δ(t). A cross-correlation of any function with a delta function

is simply the function itself and hence the shape of A(n) is the same as the

shape of the pulse.

Determining the pulse width from the intensity autocorrelation, Ac(τ),

requires some previous knowledge of the pulse shape. If a pulse shape is

assumed, the autocorrelation width, τac, is related to the pulse width, τp, by

some deconvolution factor, k.

τac = kτp (1.7)

The deconvolution factor can be calculated for analytical pulse shapes or

computed numerically for complicated pulses. Table 1.2 lists deconvolution

factors for some common pulse shapes.

1.4 Autocorrelation signals

An autocorrelator can be made such that it gives purely the autocorrelation

signal. More often than not though, the output of it is the sum of several

terms, one of which is the autocorrelation. This is because of the way the

cross term in the autocorrelation is generated and detected. An autocorre-

lator is just a device that splits a light pulse into two, varies the delay in

one and then combines them back. A detector sensitive to the required au-
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Pulse Ac(τ) τac k =

shape τac/τp I2(τ) − (1 + 3Ac(τ))

Gaussian e−τ2

1.664 1.414 ±4e(3τ2/4)

Sech 3(τ cosh τ−sinh τ)

sinh3 τ
2.720 1.543 ±3[sinh(2τ)−2τ ]

sinh3 τ

Square
1 − |τ | |τ | ≤ 1

0 elsewhere
1 1

±4(1 − |τ |) |τ | ≤ 1

0 elsewhere

Table 1.2: Autocorrelation functions for some pulse shapes. The last col-

umn gives the extra terms in the envelopes of I2 which are not

necessarily proportional to Ac [6].

tocorrelation term is then placed at the output. The detector is usually slow

enough such that it integrates over the whole pulse.

If a lot of identical pulses are available, the autocorrelation signal can be

reconstructed from by varying the delay and taking measurements at each

delay, making use of the periodicity property of the autocorrelation1.

However, a typical detector, at optical frequencies, is usually only sensi-

tive to the intensity, I ∝ |E|2 of the light. If E(t) is a superposition of two

1There are also single-shot autocorrelators that samples the various time delay using

just one pulse by overlapping the pulse at an angle such that different parts of the pulse

moves through different amount of delay. A linear-array detector is then needed since all

the delays are measured simultaneously.
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electric fields, then from equation 1.5, if E2 = E1, we get,

I1(τ) =

∫

∞

−∞

|E1(t) + E1(t − τ)|2 dt

=

∫

∞

−∞

|E1(t)|
2 + |E1(t − τ)|2 dt

+

∫

∞

−∞

E1(t)E
∗

1(t − τ) + E∗

1(t)E1(t − τ) dt

= 2

∫

∞

−∞

|E1(t)|
2 dt

+ 2

∫

∞

−∞

Re[E1(t)E
∗

1(t − τ)] dt. (1.8)

∝ 1 + A(1)(τ)

The first term of equation 1.8 is a constant and the second term is the

field autocorrelation, A(1)(τ). Therefore if a detector which is only sensitive

to intensity is placed at the output, it will measure a field autocorrelation

signal on top of a background with a peak to background ratio of 2:1 as can

be seen by setting τ to zero. The maximum always occurs at zero delay as

mentioned earlier.

To measure higher order autocorrelations, we either need a detector that

is able to detect the relevant correlation term or place an optical element

that is able to generate that required term. With both methods, it can be

seen that what is required is something that gives a non-linear response to

the electric field.

For the intensity autocorrelation, let’s say we are somehow able to detect

the term |E2|2 directly which is not unreasonable since its just I2. Then if

the electric field is again a superposition of two time delayed electric fields
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we get,

I2(τ) =

∫

∞

−∞

∣

∣[E1(t) + E1(t − τ)]2
∣

∣

2
dt (1.9)

=

∫

∞

−∞

∣

∣E2
1(t) + 2E1(t)E1(t − τ) + E2

1(t − τ)
∣

∣

2
dt

= 2

∫

∞

−∞

I(t)2 dt

+ 4

∫

∞

−∞

I(t)I(t − τ) dt

+ 4

∫

∞

−∞

[I(t) + I(t − τ)]Re[E1(t)E
∗

1(t − τ)] dt

+ 2

∫

∞

−∞

Re[E1
2(t)E∗

1
2(t − τ)] dt (1.10)

As can be seen, the second term in the expansion is just the intensity autocor-

relation. The first integral term is a constant. The third term is the slightly

modified version of the field autocorrelation introduced earlier. And the last

term is the interferogram of the 2nd harmonic of E(t), i.e. interference fringes

at twice the frequency of that for E(t). Since the signal measured, I2 con-

tains the intensity autocorrelation with fringes present, it is also referred to

as the fringe-resolved autocorrelation (frac). It has a peak to background

ratio of 8:1 as seen in figure 1.1.

Looking at equation 1.10 once again, we see that the last two terms have

the form of

Re[f1(t)f
∗

2 (t − Θ)] ∝ Re[eiΘ] ∝ cos Θ

which has fast oscillating components compared with the other terms. If we

are able to remove these two terms, either by averaging or making f1 and f2

orthogonal such that

∫

∞

−∞

Re[f1(t)f
∗

2 (t − τ)] = 0

for all τ , we are only left with the first two terms. Let us call this new signal
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Figure 1.1: FRAC trace for a Gaussian pulse shape and its fringe resolved

intensity autocorrelation signal.

Ĩ2. So we have,

Ĩ2(τ) = 2

∫

∞

−∞

I(t)2 dt

+4

∫

∞

−∞

I(t)I(t − τ) dt

∝ 1 + 2Ac(τ) (1.11)

which is just the intensity autocorrelation sitting on top of a background

with a peak to background ratio of 3:1 (see figure 1.1). This is similar to the

autocorrelation of the sum of two uncorrelated functions but with an extra

background term.
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Chapter 2

Alternatives for non-linear

medium

As we have seen in the previous chapter, in order to realise an intensity

autocorrelation experimentally, we need a non-linear optical element or a

detector that has non-linear response. There are a variety of elements and

choices available each with its own merits and disadvantages.

Since the lowest order non-linear response is that for the second order,

which is also the easiest to implement, we’ll be looking for media with a

second-order response to light. If we take the induced polarisation, P , as a

measure of its response, then we can write it as a function of the real electric

field, E , as follows,

P = ε0

[

χ(1)E + χ(2)E2 + χ(3)E3 + · · ·
]

where χ(1), χ(2) and χ(3) are the first-, second- and third-order susceptibilities,

tensors which measure how much a medium responds to the corresponding

electric field terms.
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2.1 Second order response

Most media already have some sort of non-linear response to light. However,

this non-linear response is weak most of the time and thus drowned out by its

linear response. Hence an important factor in choosing a suitable medium

is a high non-linear susceptibility or, linear and non-linear responses that

can be easily separated such that detection of the non-linear variety becomes

possible.

Common methods for second order detection include detection of doubled

frequency light from a second harmonic generation crystal [7], detection of

light from two photon fluorescence [8], detection of transmitted light after

two photon absorption [9] and detection of photocurrent generated by two

photon absorption [1]. For each of these processes there is common need

for a large electric field such that the non-linear effects becomes appreciable.

This fits nicely with the measurement of short pulses since these short pulses

typically have very higher peak intensities.

Second harmonic generation

A second harmonic generation (shg) crystal can generate light at twice the

frequency of the incident light. This can be loosely described as the destruc-

tion of two photons of lower energy to create a single photon with twice the

energy. There are certain conditions that must be met for this generation

to be efficient. The most important condition is phase matching. When this

condition is met, the frequency doubled light generated throughout the crys-

tal is in phase with each other, adding up constructively and thus giving a

high doubling efficiency. For phase matching to be possible we need a crystal

whose refractive indexes are the same at the fundamental frequency, ω and
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double that frequency, 2ω,

n(ω) = n(2ω) (2.1)

However, most normal crystals have refractive index that are monotonously

increasing functions of frequency. Hence, phase matching is usually achieved

by using a birefringent crystal where the refractive index depends on the

polarisation of the light. For orthogonally polarised light, the ordinary and

extraordinary indexes of refraction, no and ne can be made to satisfy the

above relation by choosing a suitable direction of propagation. In a positive

crystal (e.g. quartz) ne > no, so that equation 2.1 becomes

ne(ω) = no(2ω)

There are two types of phase matching. In Type I phase matching, the

two incident photons have the same polarisation while in Type II, they have

orthogonal polarisation. Type II phase matching is frequently used in back-

ground and fringes free setups. A high-pass filter is placed at the output

to separate the frequency-doubled light which is then detected by a nor-

mal photodetector or photomultiplier. Besides direction of propagation, the

thickness of the crystal also is another important condition.

Generally, to increase the doubling efficiency, a thicker crystal is preferred

since there will be more medium where frequency-doubling can take place.

However, for a thick crystal, only a narrow range of frequency can satisfy the

phase-matching condition. If a pulse with frequency bandwidth larger than

that narrow range, frequencies outside this small region doesn’t get doubled.

Hence if an intensity autocorrelation was done using this narrowed signal, the

autocorrelation will lead to an overestimation due to the reduced frequency

contributions.

SHG is the most widely used method of implementing intensity autocor-

relations for pulses in the visible and near-infrared regions. However, due to
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a lack of suitable non-linear crystals, implementation for pulses in the blue

and ultraviolet regions are not readily available.

Two photon fluorescence

In two photon fluorescence, two photons gets absorbed simultaneously by a

fluorophore exciting it. The fluorophore then fluoresces a photon at a certain

wavelength due to spontaneous emission. The wavelength of the emitted

photon is dependent of the fluorophore used. Detection of the fluorescence

is similar to the second harmonic case.

Due to the nature of fluorophores, there are a wide variety of medium

available across many frequency regions. However, due to difficulty in han-

dling such media, it is only popular in the U-V region, where SHG imple-

mentations are not viable.

Two photon absorption

Similar to two photon fluorescence, two photons get absorbed by the medium

in two photon absorption schemes. However, the medium doesn’t have to

be fluorescent. If it is assumed that there are no other losses other than

two photon absorption, i.e. no single photon absorption can occur, then the

intensity of transmitted light, Itransmit, would be

Itransmit = I0 − Itpa

where I0 is the intensity of the beam before passing through the medium and

Itpa is the intensity of light absorbed due to two photon absorption. Itpa

would be the term holding the autocorrelation signal that we are interested

in.
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This can only occur when the medium that we are using is transparent

at the frequency of the pulse we are interested in.

Another possibility in detecting the absorption of two photons is to look

for the photoelectrons generated. This can only be done if the medium is

conducting. What we are essentially looking for is a conductive material

with high enough energy level spacings such that single photons do not get

absorbed and hence do not generate photoelectrons. This sounds like a job

for semiconductors which are band-gap materials. We shall take a look at

them further in the next section.

2.2 Band-gap materials

A band-gap material has a valence and conduction band separated by a

band-gap. At very low temperatures, the valence band is completely filled

with electrons while the conduction band is completely empty of electrons.

Without any free charge carriers, no current can flow through the material

and it is non-conducting.

Charge carriers can be introduced by thermal or radiative excitation of

an electron, which then can be detected as a current if an applied voltage

is present. Hence, the current generated across a semiconductor is propor-

tional to the number of excitations. Typically, radiative excitation, where a

single photon of energy greater than the band gap is absorbed to excite an

electron to the conduction band, is much more welcomed than electrons ex-

cited thermally in any light detection scheme. The photocurrent generated,

I is proportional to the number of photoelectrons excited, N , which is then

proportional to the intensity of light, I, falling on the semiconductor,
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I ∝ N ∝ I.

For photons with energy larger than the energy band-gap, this forms the

basis of linear single photon detection. Additional structures like P-N junc-

tions, Schottky barriers or avalanche regions may be built with the purpose

of increasing the current generated for the same applied bias voltage.

It should be noted that in the linear detection region, absorption of pho-

tons with energy less than the energy band-gap of the semiconductor is very

low. The photocurrent generated from these absorptions, mainly due to im-

purities present, are usually indistinguishable from the background noise due

to thermal excitations. If we increase the intensity of light falling on the

semiconductor, with photon energy still smaller than that of the band-gap,

interesting things may start to happen as the detection starts to behave

non-linearly.

With sufficient intensities, the probability of an electron being excited by

two photons at the same time increases. Now,

I ∝ N ∝ I2.

The photocurrent generated is now dependent on the square of the inten-

sity only, provided the current due to thermal excitations remains small.

An advantage of detection that is dependent on intensity only, rather

than electric fields, is that we don’t need to consider phase-matching or the

polarisation of our light. Thus for two photon fluoroscence and absorption, we

can simply shine light enough onto the medium to get a non-linear response.

Since no phase-matching is required, the non-linear bandwidth of detection

is determined only by the medium and thus can be very large.
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Photosensitive diodes

The most commonly available semiconductor photodetector is the P-I-N junc-

tion silicon photodiode. It has a wide spectral absorption from mid UV up to

the infrared region. For selective absorption from a narrow wavelength range,

spectral filters are used such that only the wanted wavelengths reaches the

photodiode, while the rest gets absorbed. This is unacceptable for non-linear

detection since we need the semiconductor to be intrinsically to be able to

absorb two photons directly. This won’t happen if the lower energy photons

are being absorbed by some other filter. As such, we need to need to find

other semiconductor materials which are more suitable.

A non-obvious choice would be light emitting diodes. LEDs are made

using various elements, depending on the colour of light needed, hence we

have a wide selection of wavelengths to work with. Although some LEDs

generate light across a wide spectrum and restricts their emission pattern

by using coloured filters, most LEDs though have narrow intrinsic emission

spectra. Hence it is prudent to assume that they have similarly narrow

absorption spectra too.

Perhaps the most obvious of difference is that an LED needs a direct

band-gap material while a silicon photodiode need no such constraint. A

direct band-gap, in contrast with an indirect band-gap simply describes the

relative position of the conduction band above the valence band. It is easier

for electrons to be excited radiatively in a direct band-gap semiconductor

than an indirect one. This is usually done by having a binary semiconductor,

where more than one elements are present, instead of just single elements.
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Chapter 3

Characterisation of LED

3.1 Design of typical LED

P-N junctions

The light emitting diode, LED, is a direct band gap semiconductor usually

made from group III-V elements. It is a solid state device with a high elec-

trical to optical power conversion efficiency. It typically functions using a

P-N junction. Like in a normal diode, in the forward bias, current flows

easily whilst in the reverse bias, there is very little current flow. The only

difference however is that light is emitted in the forward bias for an LED

due to electron-hole pair recombination in the junction. A typical current-

voltage characteristics of a P-N junction is shown in figure 3.1. For operation

in reverse bias, the amount of current flow is determined by the number of

charge carriers present in the depleted region of the junction. Charge carriers,

specifically electron hole pairs, can be generated either by thermal excitation

or by radiative excitation through the absorption of a photon. Therefore, at

constant temperature, the number of charge carriers present and hence the
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reverse saturation current through the LED is proportional to the number of

photons absorbed by the P-N junction.

Current

I0

Voltage

Saturation current, 10µA

Figure 3.1: A typical current voltage characteristic of a P-N junction. In

the forward bias, current increases exponentially with increas-

ing voltage. In the reverse bias, current quickly saturates to

saturation current, I0.

A real LED

The LED comes in various shapes, sizes and colours. The two main uses for

LED today are displays and lighting, and both have different usage require-

ments. Displays tend to require a high contrast ratio and a wide viewing angle

while lighting sources require a high luminous efficacy and correct colour ren-

dering. A common forward emitting LED is shown in figure 3.2. The light

emitting chip has an area of about 100 µm2 and is connected to the cathode

directly and to the anode by a very low resistance thin wire, typically gold.

This wire needs to be thin to minimise the amount of light blocked. All of
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wire

Metal
leads

Gold
Mold

LEDconnecting

Figure 3.2: A schematic of a typical rounded 5mm forward emitting LED.

The LED chip is usually placed in a reflector cup and encased

in epoxy mold.

Figure 3.3: Light generated at an angle greater than αc from the vertical

is trapped inside the semiconductor by total internal reflec-

tion [10].

the light that is emitted comes from this very small layer of material and

hence it is important that light extraction be efficient. A semiconductor has

a high refractive index and total internal reflection at its interface with air

causes only light generated within the escape cone to be able to escape the

semiconductor. To increase extraction efficiency, a mold surrounds the LED

and is made from epoxy having a refractive index higher than that of air,

thereby allowing a larger light escape cone as shown in figure 3.4.

Reflectors are also present to reflect side emitted light such that most light
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Figure 3.4: Light escape cone of a semiconductor (a) without epoxy mold

and (b) with epoxy mold. The refractive index of epoxy, 1.4–

1.8, gives a larger escape cone angle [10].

generated escapes through the top and not at the sides of the mold. Finally,

if a domed mold is used, the spread or viewing angle of the light emitted can

be controlled by choosing a suitable curvature of the mold which acts as a

lens.

Colours of LED

Colour of the light emitted depends on the energy band gap of the P-N

junction and hence is determined by the type of materials used. Gallium

Arsenide is commonly used for red and Gallium Nitride for blue and green

LEDs. Also, dopants, acceptor or donor impurities, can be introduced to

slightly alter the wavelength of the light emitted to make, for example, yellow

LEDs. The LED has a narrow emission spectrum of about 20–50 nm wide.

Hence it is most likely that its absorption spectrum has a similar range as

well. This narrow selectivity of wavelength is the main reason why we are

using the LED as our detector. On comparison, the average photodiode has

a typical response spectrum anywhere from 80 nm up to 2 µm.
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3.2 LED as a current detector

The LED is inherently designed for emitting and not detecting light. There-

fore it would be unreasonable to just hook it up to a ammeter and expect

any significant current when we shine light on it. To get an idea of the order

of magnitude of the current generated, we perform an estimate.

Noninverting  configuration

bias
reverse
LED in 

1 kΩ

1 kΩ

100 kΩ

100 Ω
-
+

-15V

+15V +15V

1 MΩ

Vout

Reverse Biasing
Stage

Output
Stage

Compensator
for amplifier

Figure 3.5: Circuit diagram of the current amplifier used for detecting pho-

tocurrent generated by an LED.

Referring to a data sheet, a current of 20 mA gives about 2000 millicandles

of light which converts to an intensity of 3 mW. If we assume photocurrent

generation has the same efficiency as light emission, we then get 7 A/W of

optical power for single photon absorption. To find the flux, Φ, or the number

of photons per second in 1 W of light, we use P = Φhc/λ. Using a typical

wavelength of 600 nm, Φ equals 3×1018 photons per second. For two photons
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transitions, we take the square root of Φ, since the probability of absorption is

now dependent on the square of intensity now, getting an effective absorption

of 2 × 109 photons per second. Converting back to optical power and again

at 600 nm, this corresponds to 0.6 nW. Assuming that the same amount

of current generated as in single photon absorption, we get, 4 nA for every

watt of optical power, which is not detectable with an ordinary ammeter

and requires some care to distinguish from noise. Hence we use a purposely

built current amplifier (see figure 3.5). To safely transport the photocurrent

generated to the amplification stage, a special shielded twisted pair cable,

which picks up very little noise, is used.

3.3 Spectrum of LED

Since LEDs are not designed for light detection, their data sheets do not pro-

vide all the information that would simplify our task to select a particular

device. Therefore we take the emission wavelength as a guide and acquired

a collection of LEDs and tested them for their suitability. Table 3.1 lists the

various LEDs acquired and their specifications quoted from their manufac-

turers. Since the absorption spectra of the LEDs cannot be easily measured,

the emission spectra of the LEDs were taken instead [11] to ensure there are

no other peaks other than the central maximum were present. Figure 3.6

shows their various spectrums. All are possible candidates for 2 photon ab-

sorption since the wavelength of the pulse we are working with is 780 nm

and all fall below that value and above the half value of 390 nm.

29



Colour Order-Code Peak Wavelength, λ0, [nm] Spectral Halfwidth, [nm]

Red 301-5142 635 17

Amber 301-5051 592 17

Green 301-5245 524 47

Blue 301-5221 470 35

Table 3.1: List of LEDs obtained. LEDs are manufactured by Agilent

Technologies and ordered through Farnell-In-One.

3.4 Non-linear response of LED

Although all are possible candidates for 2 photon absorption, how strong

their non-linear response is with respect to intensity will determine which

is the most suitable. To get a value for their non-linear response, we vary

the intensity of light falling on the LED by using a half-wave plate and a

polarising beam splitter and measure the photocurrent generated. Current

response was taken in both continuous, CW, and pulsed mode. Due to

the passive mode-locking of the laser system, CW operation can only reach

around 500 mW before the laser switches to pulsed operation. As can be

seen in figure 3.7, the non-linear response is much higher in pulsed operation.

This is due to a higher peak intensity in a short pulse and hence a higher

two photon absorption probability. Amber was found to have the highest

second order non-linear coefficient and subsequently used in the setup of the

autocorrelator.
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Figure 3.6: Spectrum of the various LEDs. Noise in the spectrum of the

blue LED is due to inefficient collection of light in the spec-

trometer used. Spectra was fitted to a Lorentzian curve with

full width half maximum, Γ.
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Figure 3.7: Non-linear response of current with increasing intensity of light

on LED. It can be seen that opertation in the pulsed regime

gives a much higher non-linear coefficient than in the continu-

ous regime. a
b

gives the ratio of linear and second order coeffi-

cients from the best fit curve, where current, I = aP 2 +bP +c.
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Chapter 4

Setup and results for a

femtosecond pulse

4.1 Pulse dispersion in materials

There is a Fourier relation between time and frequency. A short pulse is

made by mode-locking lots of different frequencies in phase, such that they

interefere constructively for only a short time and destructively for all other

times. As a result, the shorter a pulse, the more modes or frequency com-

ponents it has. This means that a very short pulse essentially has lots of

wavelength components and needs a medium that can amplify or lase at dif-

ferent frequencies. This is commonly refered to as bandwidth of the lasing

medium. Table 4.1 lists common lasing medium, their bandwidth and the

minimum pulse duration possible for each medium.

Travelling through a vacuum, the speed of light is c which is constant and

equal for all wavelengths. When propogating through a normal medium how-

ever, the speed of light is dependent on the refractive index of the material,

n(λ), which is a function of wavelength. Hence, different wavelength com-
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Lasing Medium Bandwith [nm] Shortest Pulse [fs]

Argon-Ion (520 nm) ∼ 0.007 150,000

Ruby (694 nm) ∼ 0.2 6,000

Nd:YAG (1064 nm) ∼ 10 120

Dye (620 nm) ∼ 100 12

Ti:Sapphire (800 nm) ∼ 400 3

Table 4.1: Bandwidth of some lasers and the minimum pulse width they

can generate.

ponents travel at different speeds through the material. This phenomenon

is known as dispersion and what this means is that for a short pulse with a

large bandwidth, pulse spreading will occur due to the difference in speeds.

Since some transmission through optical elements is inevitable, we should

consider how much material we can tolerate before our pulse spread becomes

comparable to the original width. From the specifications of our laser, we

know the pulse that we are working with has a pulse width in the order of

100 fs. Also its peak wavelength, λ0, is measured at 780 nm.

λ0 = 780 nm τp = 100 fs.

Refractive index, n(λ), as a function of wavelength, can be modelled by

the Sellmeier equation,

n2(λ) = 1 +
B1λ

2

λ2 − C1

+
B2λ

2

λ2 − C2

+
B3λ

2

λ2 − C3

= 1 +
∑

i

Biλ
2

λ2 − Ci

(4.1)

The Sellmeier coefficients of common optical glasses such as BK7, SF11 or

fused silica, can be looked up Schott Glass catalogue. A plot of the refractive

index of these materials are shown in figure 4.1.
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Figure 4.1: Refractive index of BK7, SF11 and fused silica at different

wavelengths. Although they have different refractive index at

780 nm, they have relatively similar gradients at that wave-

length resulting in similar pulse spreading for the same amount

of material passed through.

τp τp + ∆t

l

Figure 4.2: A pulse of width τp, spreads by ∆t after passing through ma-

terial of thickness, l.
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The time taken, t of a pulse with velocity, v, to pass through a material

of thickness, l, is related by, t = l/v = l/nc. For a fixed thickness, spread is

then given by,

∆t =

∣

∣

∣

∣

∂t

∂n
∆n

∣

∣

∣

∣

=
l

n2c
∆n

⇒
∆t

l
=

∆n

n2c
(4.2)

For a vacuum, ∆n is zero and hence no pulse spreading occurs. For everything

else, we find from equation 4.1,

∆n = n−1
∑

i

CiBiλ

(λ2 − Ci)2
∆λ (4.3)

For a Fourier limited pulse, the bandwidth, ∆λ can be calculated from its

time-frequency product,

τp∆ωp

2π
= τp∆ν =

τpc∆λ

λ2
= K,

where K is a factor dependent on the shape of the pulse and ν = c/λ. From

table 1.1 on page 10, we have, K = 0.315, for a hyperbolic secant pulse

shape. Putting all these in equation 4.2, we have,

∆t

l
=

Kλ2

τc2

[

1 +
∑

i

Biλ

λ2 − Ci

]
3
2
/

∑

j

BjCjλ

(λ2 − Cj)
2 (4.4)

For a 100fs pulse at 780 nm, table 4.2 lists the pulse spread per cm of

glass. Unfortunately, the dispersion coefficients for the mold encasing the

LED is not well characterised and so we are unsure how much spreading

occurs within. To get a better approximate, it is possible to saw off the mold

at the expense of optical transmission since the surface is no longer smooth.

We will use these values to estimate the spread experienced by the pulse due

to the autocorrelation setup.
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Material Spread [fs/cm]

BK7 1.54

SF11 3.26

Fused Silica 1.46

Table 4.2: Calculated pulse spreading of a 100fs pulse through some com-

mon optical glass.

4.2 Setup

For any autocorrelation setup, we need to combine the signal with an identical

copy of itself. Therefore it is necessary that we first split the signal into two

and then make the two copies overlap. Delay is introduced to one of the two

signals by varying the distance travelled by the signal, which, for a constant

velocity, just translates into a time delay. For an optical autocorrelator,

this is achieved with an interferometric setup. It is particularly convenient

to use a folded Mach-Zender interferometer, where corner cubes replace the

mirrors used in a regular Michelson interferometer, because it avoids coupling

of the beam back to the laser source. (See figure 4.3.) The whole setup is

mounted onto a 10 × 10 inch breadboard which allows for easy relocation of

the device to measure pulses of different lasers. We used BK7 glass for the

optical elements and the total amount of glass passed through by the pulse

is 3.5 cm, thus introducing a spread of about 6 fs for a pulse with an initial

width of 100fs.
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Iris 2

Corner
Cube

Corner
Cube

Beam
Splitter

Quarter
Waveplate

LED

Figure 4.3: The whole setup is mounted on a small 10×10 inch breadboard.

The irises and mirror 1 are used for aligning purposes. Iris 1

also acts as a beam dump for the second output. A quarter

waveplate allows changing of the polarization of the fixed arm.

Delay for the variable arm is done by placing the corner cube

on a motorised translation stage.
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Interferometric and non-interferometric autocorrelation

The pulse width can be found from either the intensity or interferometric

autocorrelation. For an intensity autocorrelation however, there are no com-

plicated fringe patterns making it easier to analyse over the interferometric

kind. The drawback is that an intensity autocorrelation only has a contrast

ratio of 3:1, as shown in section 1.2, making it more susceptible to any noise

in the measurement.

Interferometric setups such as the one described typically leads to fringes

at the output. In this case, we have to remove the fringes to obtain an

intensity autocorrelation. This can be achieved via averaging of the fringes

by using a numerical filter or by sweeping the delay fast enough such that

the detection time is not able to resolve the fringes and thus averages it.

Another way to get rid of interference is to have the two overlapping beams

orthogonally polarised to each other. Since the LED does not need any

phase matching conditions for its non-linear effect, only intensity, we can

get an intensity autocorrelation even if the signals from the two arms do

not interfere. This can be done by passing one of the beams through a half

waveplate once. If the input is well defined and linearly polarised, then a

half waveplate can rotate its polarisation by 90◦. Due to the proximity of

the folded beams though, a double pass through a quarter waveplate is more

practical. A zeroth order waveplate with minimal thickness is used such that

any extra spreading present in the fixed arm is negligible.
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Measurement techniques

When the corner cube moves through a distance of x, the light pulse has to

travel double that distance, 2x. From displacement measurements, we have

τ = 2x/c

where c is the speed of light in vacuum, 0.3 µm/fs. We scan our delay, τ , by at

least twice the pulse width to get the full shape of the pulse. Measurements

are done by taking current output of the LEDs as a function of x, after which

we calculate the delay, giving the autocorrelation signal. It is assumed that

the laser gives an output of identical pulses such that the autocorrelation can

be constructed from these pulses for different delay.

4.3 Discussion

Intensity autocorrelation

When the quarter waveplate is rotated such that the beams in both arms are

orthogonal, we have the intensity autocorrelation setup. An autocorrelation

as in figure 4.4 is obtained.

It can be seen that there are still fringes present in the autocorrelation

signal. This is most probably due to incomplete polarisation rotation by

the quarter waveplate, leaving the beams still not completely orthogonally

polarised. As such, further numerical averaging is needed before the auto-

correlation width can be extracted. Also, it can be seen that the signal to

background ratio is just 2:1 instead of 3:1 based on theoretical calculations.

This is caused by non-perfect overlap of the two beams on the led and also a

non-ideal 50:50 beam-splitter giving more contributions from one arm than
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the other. We fit the autocorrelation signal to

Ĩ2(τ) ∝ 1 + a

{

6
bτ cosh(bτ) − sinh(bτ)

sinh3(bτ)

}

(4.5)

from table 1.2, where a is to account for non-identical copies in both arms and

b = 2.72/τac, and extract the autocorrelation FWHM, τac as (196±3) fs. The

actual pulse width, τp, is then obtained by dividing τac by the deconvolution

factor, k.

τp =
τac

k
= (127 ± 2)fs

where k is 1.543 for a hyperbolic secant squared pulse shape as listed in

table 1.2. A pulse width of (127±2) fs is finally obtained. It should be noted

that the error in the fit is less than that introduced by pulse spreading in the

apparatus. However, we assume that the spreading experienced is a constant

since all pulses pass through the same amount of glass each time.

Interferometric autocorrelation

If we rotate the quarter waveplate such that its fast axis is parallel to the

electric field of the beam, no polarisation rotation will occur. Now the setup

gives an interferometric autocorrelation and figure 4.5 shows the new auto-

correlation signal.

Now, interference fringes are present in the autocorrelation signal. Al-

though it is now technically more difficult to extract the pulse width, much

more information is present. We have an increased signal to background ratio

of 6:1 which is much bigger than that given by the intensity autocorrelation

setup reducing errors due to noise fluctuations. It again does not reach the

theoretical limit of 8:1 because of the beam overlap problem and non-ideal

50:50 beam-splitter used.
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Figure 4.4: Intensity autocorrelation. Fringes are still present due to non-

completely orthogonal electric field. Contrast ratio of signal

against background is about 2:1.

Next we look at the autocorrelation signal envelopes. The fringes are be-

tween an upper and lower envelope, and the shape, length and beginning of

these envelopes holds information about the pulse. For a relatively unchirped

pulse1, fringes are present at the wings of the autocorrelation and go all the

way to background level. If some chirp is present, the fringes will begin at

a point higher than the background level. In other words, the lower enve-

lope will increase a little from background level before going to zero. From

figure 4.5 it can be seen that a slight chirp is present in the autocorrelation

which is caused by the dispersion introduced by the glass in the setup.

1An unchirped pulse is one that has a frequency that is constant in time.
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It is also from these envelopes that we can extract the pulse width. This

is done by extracting the autocorrelation signal edges and fitting them to

I2(τ) ∝ 1 + c

{

9
dτ cosh(dτ) − sinh(dτ)

sinh3(dτ)
± 3

sinh(2dτ) − 2dτ

sinh3 dτ

}

(4.6)

where c is to account for non-identical copies and d = 2.72/τac again obtained

from table 1.2. It should be noted that both the upper and lower envelopes

theoretically have the same parameters and hence fitting either envelope to

its function separately should yield the same parameters in both cases. The

upper envelope has much more signal and hence it is easier to fit than the

lower envelope.

An attempt to fit the upper envelope and subsequently checking that the

parameters extracted give a reasonable lower envelope yields a pulse width

of (130 ± 2) fs. As a check for consistency an intensity autocorrelation is

extracted by numerically averaging the fringes revealing a pulse width of

(141 ± 5) fs.

It is more difficult to determine the pulse width from the interferomet-

ric envelopes due to several reasons. The upper envelope increases rapidly

making it harder for the fringes to reveal the true envelope due to limited res-

olution of the translation stage. Maximum constructive interference may not

have been reached before a measurement is taken giving systematically lower

values than the true upper envelope. The lower envelope does not decrease

as rapidly and so the envelope is better revealed by the fringes. However,

since the signal is close to zero, it is much more susceptible to noise.

Next, we look at the fringes present in the autocorrelation. If the mea-

surement was performed again using smaller steps for the translation stage,

fringes on the autocorrelation can be resolved. Figure 4.6 shows the details

of these fringes. This fringes can provide a way of calibrating the delay.

Since interference occurs every nλ we can find out the scale of the delay by
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Figure 4.5: Interferometric autocorrelation of the earlier pulse in an inter-

ferometric setup. The autocorrelation full width half maximum

can be extracted either by observation or using the equation of

the best fit pulse envelope. Also, the averaged intensity is com-

puted and its autocorrelation width extracted and compared.

counting fringes. For example, in figure 4.6, we count about 15 fringes giving,

nλ = 15 · 780 nm = 11.7 µm.

The displacement measurement given by the motorised translation stage was

12 µm, which is quite close. However, resolution of the stage is not high

resulting in jagged fringes instead of smooth sinusoidal ones. Also, at such

small steps, the motorised translation stage is not able to move in linear

steps but instead moves in jumps of large and small steps resulting in the
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accordion-like fringes seen.
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Figure 4.6: Fringes in the autocorrelation. There are 15 fringes for a dis-

placement of 12µm.

Variable pulse widths

The mode-locked laser that we are using has tunable pulse widths. Since we

can access pulses of different widths, we check the performance of our device.

Because any shorter pulse would result in much more spreading than that

that can be tolerated by our device, we perform measurements on longer

pulses. Figure 4.7 shows the results of such measurements. To obtain a

value for their pulse widths, fitting can be done to either the envelopes or

the averaged intensity. In this case, the quoted pulse widths are done by
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fitting the averaged intensity, since we have checked that both methods give

results consistent with each other. Since the translation stage has a range

of more than 5cm, we should be able to measure pulses of 100 ps or more.

However, if the stage is displaced by such a large amount, alignment becomes

even more important as the beams may gradually begin to lose their overlap,

which becomes noticeable for large displacements.
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Figure 4.7: Autocorrelation of different pulse widths measured using in-

terferometric autocorrelation setup. From left to right, top

to bottom, the measured pulse widths are, 145, 155, 294 and

791 fs. Pulse widths are extracted from the numerically aver-

aged intensity autocorrelation.
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Pulse spreading through a fiber

To investigate how a pulse spreads through a dispersive medium, the light

pulse was collimated into a 5 m, single-mode at 780 nm, fiber. Due to

technical difficulties, the fiber wasn’t placed before the input of the setup

but between mirror 2 and the LED of figure 4.3. Without the fiber, the pulse

was measured to have a width of 140 fs. The fiber is assumed to be made up

of fused silica. Based on the calculations in section 4.1 we expect the pulse to

be 0.88 ps long after passing through the fiber. Figure 4.8 shows the output

measured using the interferometric autocorrelation setup.

There are three main features present in the autocorrelation. They are

the spread of the autocorrelation, the intensity averaged part and the fringes

present in the middle. The pulse width of the output is extracted from its

averaged intensity, giving a value of 5.7 ps. This value is much greater than

our estimate and hence we suspect other effects than dispersion.

A plausible explanation is the occurrence of non-linear effects. Since the

pulse has to be collimated into the fiber by the use of a focusing lens, we

expect an much higher intensity after focusing. This intense light will can

lead to effects such as self-phase modulation (spm), where new frequencies

on either side of the peak frequency are created. This effectively causes a

broadening of the frequency bandwidth. It should be noted that SPM by

itself doesn’t cause pulse spreading, only frequency broadening. However,

when this new pulse passes through a dispersive medium, it will experience

much more pulse spreading.

The fringes begins high up above the background level. This indicates

a lot of chirp in the pulse. Interference occurs only for a small amount of

delay, τ . Beyond this small delay, the two pulses are no longer within their

coherence length giving an averaged-out intensity measurement. Within the
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coherence length however, we can still see interference fringes, from which we

can either calibrate the delay or make a make an estimate of the wavelength

at which interference occurs. We count about 22.5 fringes in a delay of 60 fs.

This corresponds to a wavelength of about 800 nm for the interfering light.
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Figure 4.8: Autocorrelation of pulse after propagating through a 5m fiber.

The presence of large noise is due to the low level of light

collected at the output of the fiber.

To summarise, we see that the pulse has considerable chirp due to disper-

sion in the fiber, spreading is much more than that can be accounted for by

only dispersion suggesting non-linear SPM effects. Only wavelengths a short

bandwidth centered around zero delay can interfere. At larger delays, the

phase mismatch of the different frequencies becomes larger, due to dispersion,

and hence no more interference can occur.
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Chapter 5

Conclusion and further work

We have built a compact and easy to operate optical autocorrelator for mea-

suring ultrashort pulses in the near-infrared region. This was done using

non-linear current detection in an LED instead of the usual SHG crystal

and photomultiplier techniques. It can measure both interferometric and

intensity autocorrelation signals.

The two forms of autocorrelation signals, was examined and the pulse

width determined from each one, giving consistent results. Also further in-

formation about wavelength and chirp factor of the pulse can be obtained

from the interferometric autocorrelation. Pulse measurements from 120 fs

up to 6 ps was done demonstrating the range of our device.

Improvements

Dispersion in the autocorrelator is still significant for measurement of pulses

less than 100 fs. Short of building a dispersion compensator, the next best

way to reduce dispersion is to use as little glass as possible. Presently, the

pulse has to pass through 3.5 cm of glass. This can be reduced by replac-
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ing the corner cubes with right-angled mirrors. Furthermore, a half-silvered

mirror can be used instead the beam-splitter cube, reducing the amount of

glass used to a bare minimum.

Since the delay is done one step at a time by moving the translation stage

and measuring the signal at that delay, obtaining the autocorrelation signal

can be rather slow. If we are only interested in the intensity autocorrelation

signal, we can replace the translation stage by a speaker. If we applied

an AC voltage signal to the speaker, it will move back and forth, thereby

sweeping through the entire delay much faster. However, interferometric

autocorrelation signals are then not possible as the fringes are averaged since

the detector is not fast enough to resolve them. Also, the delay range is

limited by the amplitude and hence, the threshold voltage of the speaker.

What is next?

Since we are using an LED for non-linear detection, we can easily switch to

LEDs of different colours to measure pulses at different wavelengths. One

particular use is the measurement of pulses in the UV region (¡400 nm),

obtained by frequency doubling a visible or near infrared pulse. This fre-

quency doubled or upconverted source has important uses in the production

of entangled states. However, most of the time, not much is known other

than its spectrum and power. Hence a UV autocorrelator would be a nice

way to know more about this upconverted source. UV LEDs are particularly

expensive, so photodiodes built using binary semiconductor materials such

as, Silicon Carbide or Gallium Nitride which are blind to photons at that

wavelength, can be used instead.

If these UV photodiodes can detect a three photon absorption of 800 nm
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photons with measurable current values, then we can exploit this third order

non-linearity to do some cool stuff like triple correlators, where two differ-

ent delay are used. Theoretically, phase information can be reconstructed

from the measurements of a triple correlation [12], which would otherwise be

unknown in a normal intensity autocorrelation.

Hence this choice of non-linear detection using band-gap materials gives

us flexibility in our pulse measurements.
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Appendix

Photograph of Autocorrelator Device

Corner
Cubes

Quarter
Wave Plate

LED in
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Bias

Motorised
Translation
Stage

Beam−splitter
Cube

Figure 1: Top view of autocorrelator. The red arrow shows the direction

of the beam.
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List of equipments used

• Mode-locked Tsunami Ti:Sapphire femtosecond laser from Spectra Physics.

Manufacturer specified peak output at 800 nm, and 100 fs pulses. Rep-

etition rate of 80 MHz.

• OWIS stepper motor spindle on a translation stage. Specified with a

resolution of 2 µm.

• High brightness AlInGaP LEDs from Agilent Technologies.
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