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Abstract 

 

Quantum state measurements on polarised photonic qubits are performed using an 

optimal polarimeter. The detailed procedure for building this four-detector polarimeter 

is presented. The methods for reconstructing the polarisation states of single-photon 

ensembles and the probability density matrix of correlated photon-pairs are then 

discussed. Using a coherent light beam (laser) as our single-photon ensembles, the 

Stokes vectors of the prepared polarisation states are compared with those 

reconstructed from the measurements, and a fidelity of at least 99.4±0.5 % is observed. 

A down-converted light source is used to generate the Bell states, which are entangled 

two-qubit states, and the density matrices constructed for the different states give a 

minimum fidelity of 96.7±0.3 %. Such a polarimeter will be useful in the field of 

quantum information. In particular, a recently proposed scheme for key distribution 

requires the use of an optimal polarimeter presented in this work. 
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Introduction  

 

 

 

Quantum state tomography is the process by which an identical ensemble of unknown 

quantum states is completely characterised. By itself, quantum state characterisation 

has a fundamental interest of its own, since it concerns the quantum description of 

physical systems. The recent years, however, have seen this subject become an area of 

intensive research and investigation due to the emerging discipline of quantum 

information.  

To characterise quantum states, one naturally has to first create and manipulate 

them. Their manipulation allows information to be encoded, and hence the term 

quantum bits – or qubits for short – is coined. Experimental representations of qubit 

systems include systems of spin-½ particles, two-level atoms, as well as polarisation of 

photons.  

The polarisation of photons, in particular, is attractive because of the ease with 

which it can be easily manipulated by conventional optical devices. Characterising the 

polarisation of light requires one to first measure it – a science known as polarimetry. 

This jargon, of course, comes from classical optics. Ever since George Stokes first 

conceived of four parameters to completely represent the polarisation of light in 1852, 
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the insights gained from the last 150 years of progress in classical optics have proven to 

be invaluable in the present efforts to characterise polarised photonic states.  

 This project involves adopting and applying the classical techniques of polarimetry 

to experimental measurements of photonic quantum states. 

A four-detector polarimeter is built to perform characterisation of polarised 

photonic qubits. This is based on a minimal tomography method that is recently 

proposed by Řeháček et al. [1]. For the simplest case of single-qubit system, we use a 

coherent light beam as our single-photon source and estimate its polarisation states. The 

down-converted light source is then used to generate Bell states, which are entangled 

two-qubit states, and the density matrix constructed for the system. Our experiment 

differs from the one carried out by James et al. [2] in that our polarimeter is an efficient 

one – efficient in the sense that it is minimal (no redundancy in the information 

collected) and optimal (having the least errors). 

 A polarimeter like the one we have will be useful in the field of quantum 

cryptography. In particular, a recently proposed protocol for quantum key distribution 

[3, 4] makes use of minimal state tomography to achieve a higher efficiency than 

existing protocols.  

 We begin with a visit to the domain of classical optics and review some of the 

important concepts on polarisation of light in chapter 1. These concepts will serve as 

useful tools when we give an introduction to quantum states tomography for single- and 

pair- photonic qubits in chapter 2. Following that, in chapter 3, we explain the general 

strategy behind optimising polarimeters, after which we proceed to describe in detail 

the construction of our polarimeter in chapter 4. Results and analysis of our 

tomographic measurements are shown in chapter 5. Finally, in chapter 6, we close with 

a summary. 
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CHAPTER 1 

 

 

Polarisation of Light Waves 

 

 

 

1.1. The concept of polarisation 

Polarisation is a property common to all vector waves. It refers to the temporal 

behaviour of one of the field vectors appropriate to that wave, observed at a fixed point 

in space. For light waves, which are transverse electromagnetic waves, the electric field 

strength E is chosen to define the state of polarisation. In this chapter, we present some 

mathematical constructs for describing polarisation of light. The treatment of this 

subject follows closely to that given in Hecht’s Optics [5]. 

 

1.1.1. Stokes Parameters and Stokes Vector 

The polarisation of light can be characterized by the Stokes vector, first conceived in 

1852 by G. G. Stokes. It consists of four quantities which are functions only of 

observables of the electromagnetic wave. In other words, these quantities can be 

measured and obtain directly from experiment. This can be done with a set of four 

filters, each having a transmittance of 0.5 for incident, unpolarised light.  

 The first filter will have to be isotropic, passing all polarisation states equally. The 

second filter is opaque to vertically polarised light; the third filter to –45o polarised 
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light; and the fourth to left-circularly polarised light. If each of these filters is placed 

alone in the path of the beam under investigation, and the corresponding transmitted 

irradiances I0, I1, I2, I3 are measured using a polarisation independent detector, then the 

four Stokes parameters can be computed by the following relations: 

S0 = 2I0 , (1.1a) 

S1 = 2I1 – 2I0 , (1.1b)

S2 = 2I2 – 2I0 , (1.1c) 

S3 = 2I3 – 2I0 . (1.1d)

 We can see from the above relations that S0 is simply the incident irradiance. S1 is 

the tendency of the light to be horizontally polarised. S2 and S3 are the tendency of the 

light to be +45o and right-circularly polarised respectively. The parameter S1 will be 

positive when light exhibit a preference for horizontal polarisation, negative if the 

preference is for vertical polarisation, zero if there is no preference between these two 

states. Similar arguments hold for S2 and S3. Only three of these four parameters will be 

independent for completely polarised light, since they will then obey the identity: 

S0
2 = S1

2 + S2
2 + S3

2 . (1.2) 

 Having understood the significance of each of the Stokes parameters, it is more 

useful for us to cast eq. (1.1) into another form1. Letting IH, IV, I+45, I–45, IR and IL, 

represent the transmitted intensities of horizontally, vertically, +45o, –45o, right- and 

left-circularly polarised light, we have 

S0  =  IH + IV  =  I+45 + I–45  =  IR + IL  , (1.3a) 

S1  =  IH – IV , (1.3b)

S2  =  I+45 – I–45 , (1.3c) 

                                                 
1 We have not made an attempt to derive it explicitly. One can refer to the classic text by Born and Wolf 
[6] for an explanation and derivation. 
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S3  =  IR – IL . (1.3d)

 Since the interest often lies only in the relative values of the Stokes parameter, they 

can be normalised to the first parameter so that the incident beam is of unit irradiance, 

i.e. (S0, S1, S2, S3) becomes (1, S1/S0, S2/S0, S3/S0). The normalised Stokes vector can be 

further reduced to a three-parameter vector, by discarding the first component: (1, S1/S0, 

S2/S0, S3/S0) → (S1, S2, S3) / S0. Such a reduced Stokes vector is useful to us because its 

three Stokes parameters may be regarded as the Cartesian coordinates of a point in a 

three dimensional sphere – the Poincaré sphere. Points which fall on the surface of the 

sphere represent complete (i.e. pure) polarisation states. We now turn our attention to 

the Poincaré sphere representation of polarised light. 

 

1.1.2. Poincaré Sphere Representation of Polarised Light 

The Poincaré sphere was first introduced by Henri Poincaré in 1892. It provides a 

convenient way to represent polarised light and to predict how the polarisation states 

are changed by a given retarder. The whole Poincaré-sphere space corresponds to all 

the possible polarisation states of the light. 

 Figure 1.1 shows the three dimensional Poincaré sphere. Points on the surface of 

the sphere represent pure polarisation states. Those which fall on the equator 

correspond to linear states of polarisation. The north and south poles of the sphere 

represent right- and left-circular polarisation states respectively. All other points on the 

surface of the Poincaré sphere relate to elliptical states of polarisation. The points 

which fall on the inside of the sphere mark states of partial polarisation. A completely 

unpolarised beam will correspond to the origin of the sphere. 
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Figure 1.1: The Poincaré sphere representation of polarisation. Linearly polarised light falls on the 
equator, with horizontal (H) and vertical (V) polarisation states at opposite ends. Right- (R) and left- (L) 
circular polarisation states correspond to north and south poles respectively. The polarisation of the light 
can be imagined to be a vector P pointing from the origin of the sphere to the polarisation state in the 
sphere. Picture adapted from [7]. 
 

1.1.3. Jones Vectors 

Another representation of polarised light – the Jones vector – was invented by R. Clark 

Jones in 1941. The Jones vector is applicable only to polarised light waves. It is a two-

element column vector which makes use of the electric vector E to describe the 

polarisation form and the amplitude components of light: 

Consider a light wave travelling in the direction of z-axis. Since there are two 

dimensions perpendicular to a given line of propagation, transverse wave can occur in 

two independent states of polarisation, which can be represented as 

Ex (z, t) = E0x cos (kz – wt) î  , (1.4a) 

Ey (z, t) = E0y cos (kz – wt + ε) ĵ  , (1.4b)

where ε is the relative phase difference between the waves. We can write E as 

E =  . 
( )
( )⎟⎟⎠

⎞
⎜⎜
⎝

⎛
tE
tE

y

x (1.5) 
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Here, Ex and Ey are the instantaneous scalar components of E. This can be written in the 

complex form in order to preserve the phase information. 

E =  , ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
y

x

i
y

i
x

eE
eE

ϕ

ϕ

0

0 (1.6) 

where φx and φy are the appropriate phases.  

In the case where only the x-component is present, E(z, t) = Ex(z, t), we have of 

course light that is horizontally polarised. Similarly, the light is vertically polarised if 

only the y-component is present. Thus, with normalisation, horizontal and vertical 

polarisation states are written as: 

EH =  , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
0
1

0
0

xi
xeE ϕ

EV =  . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1
00

0
yi

yeE ϕ

(1.7) 

 

Letting ε assume zero or an integral multiple of ±2π in eq. (1.4), we will have  

E(z, t) = Ex (z, t) + Ey (z, t) 

= (E0x î + E0y ĵ) cos (kz – wt) . (1.8) 

This resultant E oscillates at an angle of +45o when the light wave is seen head on. If ε 

is instead an odd integral multiple of ±π, we have 

E(z, t) = (E0x î – E0y ĵ) cos (kz – wt) , (1.9) 

which oscillates at an angle of –45o. With this knowledge, we can write the ±45o linear 

polarisation states in Jones vectors form: 

E+45 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1
1

2
1

0

0
x

x

i
x

i
x

eE
eE

ϕ

ϕ

 , 

E-45 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

− 1
1

2
1

0

0
x

x

i
x

i
x

eE
eE

ϕ

ϕ

 . 

(1.10)
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Lastly, right- and left-circularly polarised light are the result of Ex and Ey having the 

same amplitude and a relative phase difference of 90o. Hence, the right- and left-

circular polarisation states are given by 

ER = ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ ieE

eE
x

x

i
x

i
x 1

2
1

2/
0

0
πϕ

ϕ

 , 

EL = ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ieE

eE
x

x

i
x

i
x 1

2
1

2/
0

0
πϕ

ϕ

 . 

(1.11)

We note that  

E+45 = (EH + EV )/√2 , 

E-45 = (EH – EV )/√2 , 
(1.12)

ER = (EH + iEV )/√2 , 

EL = (EH – iEV )/√2 . 
(1.13)

In this Jones vector formulation of polarisation states, two vectors, A and B, are 

considered orthogonal when A·B* = 0. From eqs. (1.7), (1.10) and (1.11), observe that  

EH · EV*  =  E+45 · E-45*  =  ER · EL*  =  0 . (1.14)

 The usefulness of the Jones vector formulation lies in its ability to predict the 

outcome of passing a polarised beam through a series of ideal optical devices by doing 

simple matrix-algebraic computation. Suppose that a polarised beam passes through an 

optical element, and the polarisation changes (in Jones vector formulation) from E to 

E′. This transformation from E to E′ can be described mathematically using a 2 × 2 

matrix. Let A represent the transformation matrix of the optical element, and we have: 

E′ = AE . (1.15)

If the beam passes through a series of optical devices represented by the matrices A1, 

A2 …, An, the resulting polarisation of the beam of light will be 

E′ = An … A2A1E . (1.16)
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The Jones matrices of a half-wave plate and a quarter-wave plate, with their fast 

axis vertical, are given by [8]: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≡
10

01
HP  , (1.17)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

i0
01

QP  . (1.18)

 

1.2. Polarisation Measurement 

 Polarimeters are optical instruments used to determine the polarisation of light 

beams. Figure 1.2(a) shows a classic polarimeter. With appropriate settings for the 

quarter-wave plate and the half-wave plate, the linear diagonal and the circular 

polarisation states can be rotated such that they lie on the H-V polarisation axis of the 

Poincaré sphere. The polariser then allows only horizontally polarised light to pass 

through. As such, the intensity registered by the detector is that of the original 

polarisation states that is subsequently rotated onto the H-V polarisation axis. Six 

consecutive measurements can be taken to establish the Stokes vector, in accordance 

with eq (1.3): 

VH

VH

II
II

S
S

+
−

=
0

1  , (1.19a) 

4545

4545

0

2

−+

−+

+
−

=
II
II

S
S

 , (1.19b)

LR

LR

II
II

S
S

+
−

=
0

3  . (1.19c) 
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Figure 1.2 (a): A classic polarimeter. The quarter-wave plate (QWP) and the half-wave plate (HWP) 
rotate the polarisation of the incoming beam onto the H-V polarisation axis of the Poincaré sphere, 
before the horizontally polarised state passes through the polariser and hits the detector. (b): The six 
intensities needed to compute the Stokes vector can be measured simultaneously by making use of 
polarising beam splitters (PBS), which transmit horizontally polarised light and reflects vertically 
polarised light. Picture (b) adapted from [1]. 
 

 Determining the Stokes parameters with this polarimeter is somewhat tedious since 

the two waveplates2 have to be rotated each time a new measurement is to be taken. 

This can easily be avoided with the polarimeter shown in Figure 1.2(b). In this compact 

setup, the use of polarising beam splitters allows the six intensities to be measured 

simultaneously. Here, two beam splitters split the beam according to the specified ratio 

so that each pair of detectors gets the same share of input intensity. The polarising 

beam splitters (PBS) then transmit horizontally polarised light and reflect vertically 

polarised light. Subsequently, the polarisation of the light beam can be easily 

characterised by evaluating eqs. (1.19). (The PBS rotated by 45o will then transmit +45o 

and reflect –45o polarised light, while the quarter-wave plate placed before the last PBS 

converts the polarisation states: right-circular to horizontal and left-circular to vertical, 

so that IR and IL can be measured.) 

 

                                                 
2 The general technical term for half-wave plate and quarter-wave plate is “retardation plate”. However, 
the usage of “waveplate” has become common. We shall continue to use this latter term for the sake of 
simplicity. 
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CHAPTER 2 

 

 

Quantum State Tomography 

 

 

 

Quantum state tomography is the process by which an unknown quantum state is fully 

characterised [9]. This is done by performing a series of measurement on the 

complimentary aspect of an ensemble of identical quantum states so that the density 

matrix of the state can be constructed. Its classical counterpart will be the process of 

three-dimensional imaging, where the subject must be scanned from different physical 

directions before it can reconstructed digitally.3 Interest in measuring quantum states 

arises from the fact that once the state of the system is known, certain quantities which 

have not been (or cannot be) directly measured can be calculated [10].  

 In this chapter, an outline of the theory of tomography found in the articles by 

Řeháček et al. [1] and by Altepeter et al. [9] is given. 

 

2.1.  Representation of Single-Qubit States 

In general, a single qubit in a pure state can be represented by 

10 βαψ +=  , (2.1) 

                                                 
3 This analogy is taken from [9]. 
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where 0  and 1  are two orthogonal states, and α and β are complex, with  

122 =+ βα  . (2.2) 

The density matrix of the prepared states can, in general, be expressed as: 

∑
=

⋅=
3

0

ˆ
2
1ˆ

i
iis σρ  , (2.3) 

where iσ̂  are the Pauli operators: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

10
01

ˆ0σ  ,    ,    ,    , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≡
10

01
ˆ1σ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡

01
10

ˆ 2σ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≡

0
0

ˆ3 i
i

σ (2.4) 

and  

{ }ρσσ ˆˆTrˆ iiis ==  . (2.5) 

Our desire to experimentally characterise the quantum state boils down to 

determine si with precision. Since si is the trace of two operators, it is a number. In our 

case where the qubit is encoded into the electric field polarisation of photons, si is just 

our Stokes parameter, and 0  and 1  represent horizontally and vertically polarised 

light respectively. 

Thus, recalling the relation between the various polarisation states in eq. (1.3), we 

have 

VH PPs +=0  , (2.6a) 

VH PPs −=1  , (2.6b)

45452 −+ −= PPs  , (2.6c) 

LR PPs −=3  , (2.6d)

where  

0=H  ,    1=V  , (2.7) 
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( )VH ±=±
2

145  , 
(2.8) 

( )ViHR +=
2

1  , 

( )ViHL −=
2

1  , 

(2.9) 

and ψP  is the probability getting state ψ  in a measurement. Recalling what we have 

for classical optics, we see that ψP  is of course just the intensity detected for a 

particular polarisation basis, i.e. ψP  is obtained directly from our experiment 

measurements.4

{ }ρψψψρψψ ˆTrˆ ==P  . (2.10)

By construction, the relationships between the various polarisation bases given by eqs. 

(2.8) and (2.9) are the same as what we have in Jones vectors representation of 

polarisation states (eqs. (1.12) and (1.13)).  

Since the Stokes parameters can be used as coordinates in three-dimensional space 

to mark a point on the Poincaré sphere, the Poincaré sphere is now a useful tool for us 

to visualise single qubit state. Any state and its orthogonal partner are found on 

opposite points on the Poincaré sphere. 

 

2.1.1 Minimal Qubit Tomography 

Just as when we determine the Stokes parameters in §1.2., we see that six probabilities 

are required before the density matrix can be constructed. However, since 0  and 1  

are orthogonal,  

                                                 
4 Strictly speaking, the intensity detected is proportional to the probability of a measurement outcome. 
But we are always dealing with the relative intensities, and hence we can conveniently equate the two. 
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110 =+ PP   

12 010 −=−⇒ PPP  . (2.11)

This is not true for just the horizontal and vertical polarisation states; it is true for other 

orthogonal polarisation states as well. What this implies is that instead of six 

probabilities, three will be sufficient for us to establish si. Each measurement defines a 

degree of freedom of the qubit in the Hilbert space, as shown in Figure 2.1. In practice, 

a fourth measurement is necessary for the purpose of normalisation. Thus, only four 

measurements are needed to construct the density matrix for single qubit. We call this 

minimal four-state tomography. 

 

Figure 2.1: Three linearly independent measurements locate the position of the qubit (the white dot) in 
the Hilbert space (represented here by Poincaré sphere).  The first measurement in the R-L basis isolates 
the unknown state to a plane. Subsequent measurements further isolate it to a line, and then a point. The 
black dot represents the projection of the qubit onto the bases. Picture adapted from [9]. 
 

 Clearly, while any four measurements of linearly independent polarisation states 

will give us the information needed to construct the density matrix, a specific choice of 

four will give us the result with the least uncertainty. This has been demonstrated 

recently by Řeháček et al. [1]. 

 Recall that in quantum mechanics, for a typical von Neumann-type projective 

measurement of a quantum system, all the possible measurement outcomes are 

represented by a set of orthogonal states ia , where ai denotes the various possible 
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outcomes. A measurement corresponds to a projection operator ii aa  acting on the 

initial states of the system. 

 A more general measurement, in which the measurement operators correspond to 

non-orthogonal states, is given by the positive operator valued measure (POVM). A 

POVM is a set of positive Hermitian operators that satisfy the completeness relation: 

∑ =
j

jA 1ˆ  . (2.12)

In a system with its state described by the statistical operator ρ̂ , the probability Pj of 

outcome j is given by: 

{ }ρ̂ˆTr jj AP =  . (2.13)

For a set of four vectors { jar } normal to the four faces of a regular tetrahedron (refer to 

Figure 2.2), they obey the following relation: 

⎩
⎨
⎧

≠−
=

=−=⋅
kj

kj
aa jkkj ,3/1

,1
3
1

3
4 δ  ,   where j, k = 1, 2, 3, 4. (2.14)

 

Figure 2.2: A set of four vectors normal to the faces of a regular tetrahedron, with unit amplitude, 
constitute a POVM. Picture adapted from [1]. 
 

This set of four vectors jar  constitutes a POVM [1] in accordance with: 

⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

3

1

ˆ1
4
1ˆ

k
kjkj aA σ  , (2.15)
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where ajk refers to the kth component of vector jar . The expression assumes a neater 

form if we insert a unity into the vectors jar  so that they are now four-component 

vectors which correspond to normalised Stokes vectors, i.e. (x,y,z) → (1, x, y, z). Then, 

eqs. (2.15) becomes 

∑
=

=
3

0

ˆ
4
1ˆ

k
kjkj aA σ  , (2.16)

and it obeys eq. (2.12)  

1ˆ
4

1

=∑
=j

jA  . (2.17)

Řeháček et al. showed that [1] for a given input state, when the average distance 

over all possible four-element POVMs is minimised, the end result is satisfied by any 

POVM of a perfect tetrahedron. In other words, the four states which will give us the 

least errors in the constructed density matrix corresponds to any four points on the 

Poincaré sphere that will form a perfect tetrahedron. 

In the light of what we have brought up in this section, we note that the six-

measurement polarimeters discussed in §1.2 can be classified as a form of von 

Neumann-type projective measurement, since the three polarisation bases used to 

compute the Stokes parameters are orthogonal to each other on the Poincaré sphere. 

The polarimeter which we built, however, is based on POVM measurement. We will be 

drawing parallels between the POVM of a tetrahedron and the existing optical 

techniques of polarimetry in the next chapter. 

 

2.2. Representation of Pair-Qubit States 

In the preceding section, what we have essentially done is to recast the standard 

knowledge of polarisation in classical optics into the language of quantum mechanics. 
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However, the formalism can be generalised to multiple qubits, and be used to 

investigate non-classical phenomena such as entanglement. In the following discussion, 

we shall focus on extending the above ideas to two-qubit systems only, since it is 

relevant to our experiment later. 

 As in the single-qubit case, the general form of a two-qubit pure state is given by 

11100100 κγβαψ +++=  , (2.18)

where α, β, γ, κ are complex,  

12222 =+++ κγβα  , (2.19)

and 00  is the shorthand for 
21

00 ⊗ . The subscripts 1 and 2 denote qubit 1 and 

qubit 2. 

 Eq. (2.3) can be generalise to  

,ˆ
4
1

ˆ
2
1ˆ

16

1

4

1

∑

∑

=

=

Γ=

Γ=

ν
νν

ν
ννρ

S

S
n

n

 

(2.20)

where n is the number of qubits (n = 2 in our case). Γ̂  and S are the Pauli-matrices-

equivalent and Stokes-vector-equivalent for our two-qubit system. A convenient set of 

16 matrices for Γ  will be the tensor products of the Pauli matrices: ˆ

ji σσν ˆˆˆ ⊗=Γ  ,   i, j = 1, 2, 3, 4. (2.21)

Then, the probability for the μth measurement is given by 

,
4
1

ˆ
4
1

ˆ

16

1
,

16

1

∑

∑

=

=

=

Γ=

=

ν
ννμ

μ
ν

ννμ

μμμ

ψψ

ψρψ

SW

S

P

 

(2.22)

where μψ  (μ = 1 to 16) is the measurement basis and W is a 16 × 16 matrix given by 
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{ }.ˆTr

ˆ
,

μμν

μνμνμ

ψψ

ψψ

Γ=

Γ=W
 

(2.23)

Eq. (2.22) can be inverted to give 

( )∑
=

−=
16

1
,

14
μ

μνμν PWS  . (2.24)

Substituting this expression into eq. (2.20), we see that the probability density matrix 

we are interested in is given by 

( )∑∑
= =

−Γ=
16

1

16

1
,

1ˆˆ
ν μ

μνμνρ PW  . (2.25)

With eq. (2.25), we have expressed ρ̂  in a way which can be easily computed. 

Operator  and matrix  can be obtained by computing the relevant tensor 

products, whereas P

νΓ̂ νμ ,W

μ, as in the case of single-qubit system, is an experimental 

measurement. In the present context of two-qubit system, Pμ is the coincidence count 

between two the detectors from two different polarimeters set up to detect incoming 

correlated photon pairs. Furthermore, since we will be implementing minimal state 

tomography, the measurement bases corresponds to the tensor products of the 4-

component tetrahedron vectors of two polarimeters, iar  and jb
r

: 

ji ba
rr

⊗=μψ  ,   i, j = 1, 2, 3, 4. (2.26)

 Famous examples of pure two-qubit states are the Bell states: 

( )

( ).
2

1

,
2

1

VHHV

VVHH

±=Ψ

±=Φ

±

±

 (2.27)

We will be generating the Bell states and attempt to reconstruct its density matrix from 

the detector counts. 
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CHAPTER 3 

 

 

Minimal and Optimal Polarimetry 

 

 

 

The schemes for the two polarimeters outlined in chapter one are motivated by the way 

we construct the Stokes vector. They are, however, far from being efficient since the 

Stokes parameters can be determined with fewer measurements. There is plainly a 

redundancy in the information collected. 

 

3.1. Optimisation of Minimal Polarimeter 

Indeed, taking four measurements is sufficient to establish the value of the three 

parameters. Such schemes are described as “minimal” because there is no excess 

information collected. Furthermore, much interest also lies in optimising these schemes, 

so as to obtain as accurate as possible a description of the light polarisation, which 

would be very desirable in fields which demand a high precision.  

 

3.1.1 Maximisation of Matrix Determinant 

Considerable research on the optimisation of polarimetry has been carried out [12-17], 

and the basic strategy common to all lies in maximising the determinant of the 

“instrument matrix”, which is unique to the experimental setup. Recall that in §1.1.4., 
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we introduce the Jones vectors and Jones calculus, which allow us to construct a 2 × 2 

matrix representation of a system by multiplying the matrices of the optical elements of 

the system in the right order. We can then pre-multiply the resultant matrix to the Jones 

vector representation of the input state and predict the polarisation of the beam after it 

exits from the system of optical elements.  

 In 1943, Hans Mueller devised a similar method for dealing with the Stokes vectors. 

In this method, optical devices are characterised by 4 × 4 matrices. Since the (ratio of) 

intensity of the light incident on the detectors of a polarimeter is dependent on its 

polarisation (which is why the polarisation can be determined from the detector 

readings), we can formulate the expression 

I = KSo , (3.1) 

where I is a 4-component vector of the intensities reading at the four output ports of a 

minimal polarimeter, So is the Stokes vector representing the light incident on the 

detectors, and K is a matrix which combine the Stokes parameters in the correct way to 

give us I. However, 

So = Mn … M2M1Si , (3.2) 

where Mj is the Mueller matrix representation of the jth optical instrument which the 

light beam passes through before it reaches the detector, and Si is the Stokes vector 

representation of the input light. Hence, we have 

I  =  K Mn … M2M1Si  =  BSi , (3.3) 

where B = KMn … M2M1. We call matrix B the “instrument matrix”. 

 Fortunately, the 16 elements of matrix B can be established through calibration, 

instead of obtaining and multiplying the Mueller matrices of all the optical devices in 

our setup. We will elaborate more on the determination of the instrument matrix 

through calibration in §4.6. For now, we just note that eq. (3.3) implies  
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Si = B-1I . (3.4) 

According to eq. (3.4), we can extract the information of the polarisation of input light 

beam if we know B and measure I. More importantly, eq. (3.4) tells us that an error δI 

in the measured signal I leads to a corresponding error δS in the derived Stokes vector 

[17]: 

δS = B-1 δI . (3.5) 

From linear algebra, we know that [18]  

B-1 = B† / det(B) , (3.6) 

where B† is the adjoint of matrix B and det(B) is the determinant of B. Thus, we see 

that maximising the determinant of B is consistent with minimising δS [17]. 

 

3.1.2. Choice of Calibration States 

We can also understand the optimisation of polarimeter from a geometrical approach. If 

we write the full vectors and matrix of eq. (3.3) out, we will obtain 

.3

2

1

0

44434241

34333231

24232221

14131211

4

3

2

1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

S
S
S
S

bbbb
bbbb
bbbb
bbbb

I
I
I
I

 (3.7) 

An inspection of eq. (3.7) shows that if we send in light of known polarisation states 

(four states needed) and measure the corresponding output intensities of each state (i.e. 

four sets of Si and I are known), the elements of matrix B can be extracted by solving 

four sets of four simultaneous equations. If these four calibration states are represented 

by four points on the surface of the Poincaré sphere, our intuition tells us that the 

optimum choice will be four points that are as far apart as possible. (See Figure 3.1) 

This of course corresponds to the four vertices of a regular tetrahedron. In other words, 

calibration done with the vertices of a regular tetrahedron as input states will give us 
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optimal polarimetry [13, 15]. With this in mind, we can look back at §2.1.1. and see 

that the optimality of a POVM of a perfect tetrahedron is consistent with our argument 

here. 

 

Figure 3.1: The four calibration points – C1, C2, C3 and C4 – form a skewed tetrahedron on the surface 
of the Poincaré sphere. The polarimeter becomes optimal when these four points are chosen to be furthest 
apart from each other, i.e. they form a regular tetrahedron. Determinant of the instrument matrix is 
proportional to the volume of this tetrahedron. Picture adapted from [13]. 
 

 We note that maximising the determinant of B is equivalent to using the vertices of 

a regular tetrahedron as calibration states, as pointed out by Ambirajan in [15]. We 

mentioned in the last chapter that the relative intensities of the four detectors are the 

probabilities of getting a basis state in the measurement. 

∑
=

=

==
3

0

ˆ
2
1

ˆ

i
ijij

jjjj

s

PI

ψσψ

ψρψ
 ,   j = 1, 2, 3, 4, 

(3.8) 

where Pj is the probability of measurement in the jψ  basis, and we substitute the 

expression for ρ̂  from eq. (2.3). In the present context, the four jψ  bases refer to the 
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four calibration states. Comparing this with eq. (3.7) above, we observe that each row 

of our instrument matrix B can actually be equated to  

{ }.ˆTr
2
1

ˆ
2
1

3

0

3

0

∑

∑

=

=

=

=

i
jji

i
jijjB

ψψσ

ψσψ
 

(3.9) 

However, { }jji ψψσ̂Tr  gives us the Stokes vector for polarisation states of jψ , as 

given by eq. (2.5). Thus, each row of matrix B is the transpose of the normalised Stokes 

vector of the calibration states (multiplied by a prefactor, which is not important to our 

discussion here). These Stokes vector are, in turn, the Cartesian coordinates of four 

points on the Poincaré sphere.  

 It turns out that the volume of a tetrahedron can be expressed [19] as the 

determinant of a 4 × 4 matrix  

444

333

222

111

ntetrahedro

1
1
1
1

!3
1

zyx
zyx
zyx
zyx

Vol =  , (3.10)

with the x, y, z of each row being the coordinate of a vertices in the three dimensional 

space. Maximising the determinant of matrix B translates to maximising the volume of 

the tetrahedron, and we see that the maximum possible volume of a tetrahedron 

restricted to a sphere is that of a regular one. 

 

3.2. A Review of Optimal Polarimeters 

With the classic polarimeter shown in Figure 1.2(a), one can perform optimal minimal 

polarimetry by choosing the appropriate angles [14, 15] for the waveplates such that the 

calibration states are those which correspond to the vertices of a regular tetrahedron on 

the Poincaré sphere. The instrument matrix can then be determined and the four Stokes 
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parameters of a beam of unknown polarisation can be computed simultaneously using 

eq. (3.4). However, this polarimeter is not the most convenient technique since it 

requires the two waveplates to be adjusted for each measurement.  

An alternative approach, which involves four detectors placed such that the 

reflection of the light beam among these detectors is used to estimate the Stokes vector, 

has been demonstrated [13] by Azzam et al.. This method has a number of advantages 

over the classic polarimeter: 

a) No other optical devices are required besides the four detectors. The partially 

reflecting surfaces of the detectors perform the function of the polarising 

elements in the classic polarimeter. 

b) The setup has no moving parts. The polarisers of the classic polarimeter have to 

be rotated for each measurement. 

c) The input light flux is completely utilised for polarisation determination: the last 

detected of the setup absorbs the light that has been reflected off the other three 

detectors. In the case of the classic polarimeter, only a portion of the input light 

flux is allowed to pass through the two waveplates. The rest is dissipated.  

One should keep in mind, however, that the relative placement of the detectors is 

crucial for this setup. It is the key factor in this polarimeter. 

 Another design [17] makes use of beam splitter and prisms to achieve optimal 

minimal polarimetry. By including a few more optical elements, it is able to perform 

optimally without the stringent requirement on the relative placement of the detectors. 

(All the equipment must be optically aligned of course.)  

 The examples above are some of the developments in polarimetry in classical optics. 

The list of possible optical configurations for optimal minimal polarimetry is by no 

means exhausted. More modern means of determining light polarisation involves the 
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use of interferometer in the polarimeter setup. Some setups need only a single loop [20], 

while others have more loops [1, 21]. These polarimeters also fulfil points (b) and (c) 

listed above, but a major drawback is that the setting up of an interferometer demands a 

very high degree of precision, both in the alignment of the optical elements as well as 

in the path length of the interferometer loop. This is a major obstacle to the practical 

implementation of these polarimeter schemes. 

 We will be constructing a polarimeter which also fulfils points (b) and (c).  
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CHAPTER 4 

 

 

Setting Up the Polarimeter 

 

 

 

With the tools and concepts discussed in the preceding chapters, we are now ready to 

present the experimental setup and the taking of tomographic measurements. Let us 

begin with an overview of the whole setup. 

 

4.1. Overview 

We implement the POVM of a perfect tetrahedral geometry with the setup shown in 

Figure 4.1. Basically, it splits the incoming beam into two portions and analyses them 

in different polarisation bases. The division of the beam is such that the outcome 

corresponds to a perfect tetrahedral geometry, thus making our polarimeter optimal. In 

anticipation of performing tomographic measurements on biphoton states (entangled 

photon pairs), we use a spontaneous parametric down converted light source5 with a 

wavelength of 702 nm, collected into single mode optical fibres6.  

                                                 
5 Loosely speaking, spontaneous parametric down conversion (SPDC) is the process involving the 
splitting of a photon into two photons of lower energies. This process obeys the usual conservation laws, 
and as a result, the two photons produced are entangled. The building of a SPDC light source is outside 
the scope of this project and hence is not discussed here. 
6 The pairs of photon produced from the SPDC process are collected in two separate optical fibres. For 
single-qubit tomography, we only make use of the light in one of fibres. 
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Figure 4.1: A schematic of the polarimeter setup. The incoming beam is divided into two by the partially 
polarising beam splitter (PPBS). The transmitted beam passes through a quartz plate at an angle, and a 
half-wave plate (HWP) at 22.5o, before the polarising beam splitter (PBS) sends the horizontally 
polarised light to detector D1 and vertically polarised light to detector D2. The reflected beam has to pass 
through a quarter-wave plate (QWP). 

 

At the heart of this setup lies a partially polarising beam splitter (PPBS), which 

splits the incoming light in a certain ratio. In the Jones vector formulation, for an 

incoming light of polarisation , the polarisation of the light along the transmitted 

arm after passing through the PPBS has the form , while that along the reflected 

arm is , where 
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12 −=y . It is this special splitting ratio 

which leads to the optimality of the polarimeter (as will be shown later).  

The polarisation of the beam in the transmitted arm of the polarimeter is measured 

in the ±45o basis by letting the beam pass through a half-wave plate rotated to 22.5o. 

The polarising beam splitter that follows then allows horizontally polarised light to be 

transmitted and vertically polarised light to be reflected. (The half-wave plate causes 

diagonally polarised light to “rotate” to horizontally and vertically polarised light. 

Hence, the detectors D1 and D2 are in fact measuring the intensities of what was 
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originally diagonally polarised light). Similarly, the quarter-wave plate set to 45o in the 

reflected arm of the polarimeter allows polarisation of the beam to be measured in the 

right- and left-circular basis. 

Silicon avalanche photodiode detectors are used because they are known to be 

extremely sensitive. They are connected to a computer, which has a program to count 

the photons detected. The counts can be collected over a time period and the data saved 

into the computer. 

Lastly, the quartz plates along both arms are meant to compensate for the unwanted 

phase shift introduced by the PPBS. As shown in Figure 4.1, they are not placed 

perpendicular to the beam, but are rotated to an angle such that the optical path through 

them offset the relative phase difference. 

A picture of the actual setup can be found in the appendix section. 

 

4.2. Splitting Ratio of PPBS 

We now proceed to demonstrate how the values of x and y stated above corresponds to 

the POVM of a tetrahedron. Let us first suppose that the polarisation of the incoming 

light, represented in Jones vector form, is given by . After passing through the 

PPBS, the polarisation of the light along the transmitted arm has the form , 

whereas that along the reflected arm is . The light beams in both arms are then 

examined in two different polarisation bases. For a general case, we express the two 

orthogonal states of a polarisation basis as  and , and we see 

that the normalised light intensities along the transmitted arm are 
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(4.2) 

where I1 and I2 are the light intensities falling on detectors 1 and 2, while IT is the total 

intensities of all the four detectors. Similarly, along the reflected arm, we have 
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where I3 and I4 refers to the light intensities falling on detectors 3 and 4. The primed 

angles denote a different polarisation basis from the transmitted arm. Rearranging eq. 

(4.1) gives us 

( )

( ) ( )

.ˆ
sincossin

cossincos

sincos
sin

cos

sincossincos

1

22

22

2
21

A

yxye
xyex

yex
ye
x

yexeyx
I
I

i

i

i
i

ii

T

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+=

−

−

−−

ψ
θθθ

θθθ
ψ

β
α

θθ
θ

θ
βα

β
α

θθθβθα

ϕ

ϕ

ϕ
ϕ

ϕϕ

 

(4.5) 

But recall from eq. (2.16) that the probability calculated from the POVM of a perfect 

tetrahedral geometry is given by: 
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We let θ = π/4 and φ = 0 out of convenience. By equating eqs. (4.5) and (4.7), we 

have 
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⇒   a11 = x2 – y2 ,   a12 = 2xy ,   a13 = 0 . (4.9) 

Following a similar approach, we obtain 

a21 = x2 – y2 ,   a22 = –2xy ,   a23 = 0 , (4.10)

a31 = y2 – x2 ,   a32 = 0 ,   a33 = 2xy , (4.11)

a41 = y2 – x2 ,   a42 = 0 ,   a43 = –2xy , (4.12)

where we have set θ′ = π/4 and φ′ = π/2. Hence,  
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By evaluating the dot product of these vectors and invoking eq. (2.14) as a constraint, 

we obtain a set of simultaneous equations: 
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It is easy to verify that  
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32
1

2
12 +=x  , (4.16a)

and   

32
1

2
12 −=y  , (4.16b)

is one of the possible sets of solutions to the simultaneous equations above. This 

implies that a setup having a beam splitter which splits an incoming beam in the way 

specified above, with the values of x and y given by eq. (4.16), corresponds to the 

POVM of a perfect tetrahedron, i.e. the polarimeter will be minimal and optimal.  

Hence, a PPBS with this special splitting ratio is ordered for the purpose of this 

experiment. 

It should be noted that eq. (4.16) is not a unique solution which one can extract 

from eqs. (4.14) and (4.15). Other solutions will correspond to a tetrahedron of 

different orientation, which is also optimal.7  

Another point is that the values of x and y are also dependent on the choice bases in 

which we measure the polarisation. Here, we set θ = π/4, φ = 0, and θ’ = π/4, φ’ = π/2 

out of convenience and they correspond to ±45o basis and right/left circular basis 

respectively. We will have to measure the polarisation in these two bases, since the 

values of x and y we obtained follow from the choice of polarisation bases. 

 

4.3. Alignment of Optical Elements 

The light beam coming out from the optical fibre connected to a SPDC light source is 

diverging and has to be collimated (made parallel) first, before passing it through the 

optical elements. This can be accomplished using a lens of suitable focal length. After 

the beam is divided into four portions by the beam splitters, they are fed into the 
                                                 
7 On a practical note, limitations in the manufacturing of partially polarising beam splitter can restrict the 
number of sets of solutions that can actually be realised experimentally. 
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detectors via optical fibres. Here, we need to focus the beams onto the optical fibres, 

which can be accomplished using the same lens.  

 

4.3.1. The Lens Units 

The lens is fitted inside a tube and mounted onto a holder, as shown in Figure 4.2a. The 

position of the lens in the tube can be shifted so that the when the optical fibre are 

attached to the holder too, the end of the fibre is at the focal point of the lens. The final 

lens unit will allow us to collimate a diverging beam coming out of an optical fibre as 

well as focus a collimated beam onto a fibre.  

Since the beam we are using is not visible to the naked eye, we switch to a helium-

neon (He-Ne) laser source for the purpose of collimating the beam and aligning the 

optical devices.  

 

Figure 4.2(a): A lens unit. (b): When the beam is collimated, the cross section of the beam should have 
the same diameter at any position along its path. Once the lens units are aligned, the collimated laser 
beam will pass straight through. The beam coming out at the end will be fed into the detector. 

 

The He-Ne laser operates in the red at 632.8 nm. The beam produced is also not 

directly visible, but by placing a piece of paper in its path, the profile of the beam is 
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captured on the paper. By sending a He-Ne laser beam through an optical fibre 

connected to the lens unit, we know that the lens is in the right position when the beam 

coming out has the same cross-section area at any place along its path. (Refer to Figure 

4.2b.) 

Five such units are assembled – one to be connected to the SPDC source, the rest to 

be connected to a detector each. 

 

4.3.2. Aligning through Maximising Output Intensity 

Next, we need to align all the five units optically. In other words, we want to ensure 

that the collimated beam coming out of a lens unit does finally hit the lens of the 

remaining four units and is fed into their optical fibres.  

The lens units and the beam splitters are placed on the optical bench and arranged 

according to the schematic shown in Figure 4.3. Then, with a piece of paper positioned 

in the path of the beam, the beam profile is captured and we can follow the course of 

the beam and ensure that it hits the lens units that will be connected to detectors.  

 

Figure 4.3: Initial setup to be aligned. D1, D2, D3 and D4 are the lens units connected to the detectors. 
 

To ensure that the beam will indeed enter the optical fibre, we need to verify for 

ourselves that light leaves the other end of the fibre. For this purpose, we point the end 

of the fibre towards a piece of paper and check for the tell-tale sign of a red spot. 
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Having seen it, we will then tune the adjustment knobs on the lens holder (see Figure 

4.2a). This has the effect of changing the orientation of the lens unit by minute degrees. 

By changing turning the knobs, we are effectively adjusting the amount of light that 

enters the optical fibre. Once the intensity of the red dot shown on the paper is at its 

highest, we connect the lens unit to a detector (which is in turn connected to a 

computer). 

Finally, we switch back to the 702 nm wavelength beam from SPDC process and 

start the counter program in the computer. We now tune the adjustment knobs of the 

lens units again, until we are fully satisfied that the counts registered by each detector 

are at their maximum.  

 The aligning of the detectors to the beam from the source is a somewhat tedious 

process, but its importance cannot be overemphasised. Remember that we are using the 

ratio of the counts from the four detectors to reconstruct the Stokes vector of the input 

polarisation state. Failing to align them properly will mean that one (or more) of the 

detectors has counts that are less than what they should be. This will in turn affect the 

accuracy of our final results. 

 

4.4. Polarisation Measurements in Two Different Bases 

After the PPBS divides the incoming beam into two portions, we want to project and 

measure the polarisation of the transmitted beam and reflected beam in two different 

polarisation bases. When we compute the splitting ration of the PPBS earlier, we 

choose θ = π/4, φ = 0 for one basis, and θ′ = π/4, φ′ = π/2 for the other. These two bases 

correspond to ±45o basis and right/left circular basis respectively.  
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 To see that this is so, we just need to substitute these angles back to the general 

form of orthogonal basis  and . With θ = π/4 and φ = 0, the set 

of basis becomes 
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4.4.1. Angles of Half-wave Plate and Quarter-wave Plate  

In order to do a measurement in the ±45o polarisation basis, we will need to place a 

half-wave plate – with its fast axis turned to 22.5o – in the path of the beam in the 

transmitted arm. This half-wave plate will rotate the ±45o polarisation states to the H-V 

polarisation basis, so that they can be divided and analysed by the polarising beam 

splitter and the detectors respectively.  

 Similarly, a quarter-wave plate with its fast axis at 45o will rotate right- and left- 

circular polarisation states to H-V polarisation states. We can easily verify this for 

ourselves. Recall the Jones matrices for half-wave plate and quarter-wave plate given in 

eqs. (1.17) and (1.18). When a half-wave plate is rotated about it principal axis to an 

arbitrary angle, its new Jones matrix is  
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where R is the rotation matrix and θ is the angle of the half-wave plate. Setting θ = 

22.5o, and pre-multiplying the matrix to Jones vector of ±45o polarisation states given 

by eq. (1.10), we have 
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From eq. (1.7), we know that these are just our H-V polarisation states. 

For quarter-wave plate, we have 
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with φ as the angle of the quarter-wave plate. When φ = 45o,  
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which are, again, just our H-V polarisation states. We can ignore the pre-factor which 

denotes a global phase shift. 

 

4.4.2. Aligning the Optical Axis of Retardation Plates  

The waveplates are mounted onto a circular rotating plate which has markings at each 

degree interval. To set the waveplates to the desired angles, we must first align the 

optical axis of the plates to coincide with the vertical or horizontal axis8. This is done 

with the setup shown in Figure 4.4, which consists of two Glan-Thompson polarisers. 

                                                 
8 Perpendicular axes result in polarisation states that are different from each other by just an overall 
phase factor, which will not affect the overall physical outcome of the experiment. 
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A laser diode sends a beam with wavelength of 690 nm to the first Glan-Thompson 

polariser. A Glan-Thompson polariser, when placed upright, will transmit horizontally 

polarised light while reflecting vertically polarised light. We placed the first polariser 

upright while rotate the second by 90o (i.e., placed it on its side). This second polariser 

will transmit vertically polarised light and reflect horizontally polarised light. Hence, as 

it stands, no light will be observed coming out from the transmission port of the second 

Glan-Thompson polariser9.  

 

Figure 4.4: Setup for aligning optical axis of retardation plates. Red arrows represent the polarisation 
states. The second Glan-Thompson polariser is rotated 90o so that it now transmits vertically polarised 
light (V). Only when the optical axis of the polarisation plate is properly aligned will it allow the 
horizontally polarised light (H) to pass through unchanged. Otherwise, the beam leaving the plate will 
have a vertical component, which will be transmitted by the second Glan-Thompson polariser. 
  

 Next, we insert the waveplate between the two Glan-Thompson polarisers. If the 

optical axis of the plate is vertical or horizontal, it will allow the transmitted 

horizontally polarised light from the first polariser to pass through unchanged. But this 

light will be reflected by the second polariser and hence, no light is transmitted through. 

For any other angle the optical axis makes with the vertical, the horizontally polarised 

beam from the first polariser will be rotated and acquire a vertical component, which 

can be transmitted through the second polariser. 

                                                 
9 This can be easily verified by placing a piece of paper after the second polarizer and see if a red spot – 
the profile of the beam – is captured on it. 
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 Thus, with the waveplate placed between the two Glan-Thompson polarisers, we 

rotate the waveplate to a position where we do not observe any light coming out from 

the transmission port of the second polariser.  

 With the optical axis aligned, we then rotate the waveplate by the desired angle – 

22.5o for half-wave plate and 45o for quarter-wave plate. The half-wave plate is then 

inserted into the transmission arm of the polarimeter, while the quarter-wave plate the 

reflected arm (Refer back to Figure 4.1 for their position.). 

 

4.5. Phase Correction: Quartz Plate 

The polarimeter is almost complete now. The last thing we need to do is to compensate 

for the phase retardation introduced by the PPBS. This phase shift will give us a 

systematic error is left uncorrected.  

 

4.5.1. Phase Retardation by Birefringent Quartz Plates 

 To change the phase difference between the two orthogonal components of the 

electric field of the light, Ex and Ey, we need a birefringent plate. A birefingent material 

exhibits reflective indices which are dependent on the direction of the light passing 

through it. The reflective index of the birefringent plate will appear different for Ex and 

Ey. As a result, Ex and Ey will travel at different speed and an overall phase retardation 

is induced in the emerging beam. 

The phase change, Δδ, is given [5] by 

eo nnd −=Δ
0

2
λ
πδ  , (4.21)

where λ0 is the wavelength of the light in vacuum, d is the geometrical path length 

taken by the light through the crystal,  no and ne are the two principal indices of 

refraction.  
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 The birefringent property of quartz plate makes it a suitable candidate to correct for 

the phase shift. We first align the optical axis of a pair of quartz plates10 and insert 

them into the transmitted and reflected arms of the polarimeter, as shown in Figure 4.1. 

They are the first optical elements in the two arms of the polarimeter so that the phase 

retardation due to the PPBS can be corrected first before the two beams make their way 

through the remaining optical elements in our setup.  

 As the eq. (4.21) suggests explicitly, the phase retardation induced by a birefringent 

material is dependent on the length of the geometrical path of light through it. By 

rotating the quartz plates about their optical axes, we are effectively changing the 

geometrical path length of the light through the quartz plate (see Figure 4.5). Hence, 

whatever the amount of phase shift introduced by the PPBS is, we can correct for it by 

turning the quartz plates through a suitable angle. We stop rotating when the phase 

retardation is exactly compensated for.  

 

Figure 4.5: View of quartz plate from the top.  By rotating it, we are effectively changing the geo-
metrical path length of the light through it. 
  

 In order to know how much to turn the quartz plate, we have to compare the 

theoretical expected counts of each detector with the experimental reality. In other 

words, we have to send in known polarisation states and see if the behaviour of the 

polarimeter agrees with our own predictions. 

 

                                                 
10 This involves the same setup and process outlined in the previous section, §4.2.2. 
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4.5.2. Modelling of Detectors Counts 

 

Figure 4.6: Setup for generating the input states. The half-wave plate (HWP) and quarter-wave plate 
(QWP) at the front can rotate the polarisation state of the incoming beam to any other possible states. 
  

Consider the setup of Figure 4.6. We prepare the input states by placing a polariser, a 

half-wave plate and a quarter-wave plate in front of the polarimeter setup. The polariser 

will allow only horizontally polarised light to pass through. With the combination of 

half-wave plate and quarter-wave plate, we can then rotate the horizontally polarised 

light to any other possible polarisation states. On the Poincaré sphere, we are just 

effectively shifting a point on the equator to any other points on the surface of the 

sphere. The polarisation of the light that leaves these polariser plates is known because 

we can easily compute it using the Jones calculus. 

 We have already computed the general Jones matrices for half-wave plate and 

quarter-wave plate in eqs. (4.17) and (4.19). From eq. (1.7), we know the Jones vector 

of horizontally polarised light to be . Hence, the polarisation of light exiting the 

polariser wave-plates is  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅≡

0
1

prep HWPQWP RR  , (4.22)



 41

where prep  denotes the polarisation state prepared by us.  

If we rotate the half-wave plate through a range of 360o while keeping the quarter-

wave plate angle unchanged (i.e. φ = 0), we get 
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After passing through the PPBS, the Jones vector along the transmitted arm acquires 

factors of x and y: 
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where we recall that 7887.0
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12 ≈+=x  and 2113.0
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12 ≈−=y . The half-

wave plate set at 22.5o (substitute θ = 22.5o into eq. (4.17) to get the matrix) further 

rotate the polarisation state to 
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The Jones vector along the reflected arm, on the other hand, acquires factors of y and x 

after the PPBS: 
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which is then rotated by the quarter-wave plate at 45o (i.e. φ = 45o in eq. (4.19)): 
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 The ratio of counts in the four detectors can be easily calculated: 
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where we multiply a H  to transmit  because the polarising beam splitter allows 

horizontally polarised light to pass straight through to reach detector 1, while it reflects 

vertically polarised light to detector 2. Thus, for detector 2, we have 
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Similarly, 
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A plot of the counts ratio against the angle of the half-wave plate is shown in Figure 4.7. 

We note that the predicted counts of detector 1 and 2 are the same.  

 We repeat the above analysis, this time on a similar setup except that there is no 

quarter-wave plate after the half-wave plate. With this setup, we have 
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Ratio of detector counts with QWP in setup
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Figure 4.7: Graph of P1, P2, P3 and P4 against half-wave plate angle, with a quarter-wave plate in the 
setup. Plot of P1 and P2 coincides. 
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(4.34)

And the ratio of the detectors counts is 

( )2
1 2sin2cos

2
1 θθ yxP +=  , (4.35)

( )2
2 2sin2cos

2
1 θθ yxP +−=  , (4.36)
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( ) ([ ]22
43 2sin2cos2sin2cos

4
1 θθθθ xyxyPP −++== )  . (4.37)

We observe that the counts for detectors 3 and 4 should coincide, as shown in Figure 

4.8. 
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Figure 4.8: Graph of P1, P2, P3 and P4 against half-wave plate angle, without a quarter-wave plate in the 
setup. Plot of P3 and P4 coincides. 
 

4.5.3. Dark Counts 

Before we proceed with the testing of our model against the experimental results, we 

need to point out that our detectors will register photon counts even when the laser is 

switched off. We call them dark counts, since these counts represent the background 

light detected. They will contribute an error to our final ratio of detector counts if not 

taken into account. Therefore, before we start taking any measurement, we always 

close the aperture of the argon laser and take the readings of the dark counts for all 

detectors. (The dark counts registered by the detectors are dependent on their efficiency, 



 45

and hence not the same for all the detectors.) These readings will then be subtracted 

from the subsequent data we take for the experiment. 

 

4.5.4. Rotating the Quartz Plates 

Knowing what we should be expecting from the detector counts, we proceed to rotate 

the quartz plate until reality matches our expectation. With the polariser and two 

retardation plates inserted in order to prepare the input states, we first leave the quarter-

wave plate alone while we connect the half-wave plate to a motor and set it to rotate 

through a range of 360o. At intervals of 2o, the motor will pause for 5 seconds, allowing 

the detectors to take the photon counts. At the end of the 360o turn, the photon counts 

of each detector are plotted against the angle of the half-wave plate.  

 Adopting a trial-and-error approach, we rotate the quartz plate in the transmitted 

arm by a small angle and repeat the data-taking procedure outlined above to check if 

the plot for detectors 1 and 2 coincide as they should. This step is taken repeatedly until 

the experimental results match with our theoretical predictions.  

 Next, we remove the quarter-wave plate from the setup and rotate the half-wave 

plate through one full turn again, collecting detector readings for 5 seconds at every 2o 

interval. Without the quarter-wave plate, the plot of detector counts for detector 3 and 4 

(in the reflected arm) should coincide. Hence, we rotate the quartz plate in the reflected 

arm until the experimental results agree with our expectation. 

 Figure 4.9 and 4.10 shows the experimental with the theoretical plots. The 

difference in amplitude between the experimental and theoretical plots is due to the 

efficiencies of the detectors. 
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Photon counts of four detectors with QWP in setup
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Figure 4.9: Plot of counts from four detectors with the theoretical probabilities, with the quarter-wave 
plate in setup. The differences in amplitude are due to the efficiencies of the detectors. 
 

Photon counts of four detectors without QWP in setup
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Figure 4.10: Plot of counts from four detectors with the theoretical probabilities, without the quarter-
wave plate in setup. The differences in amplitude are due to the efficiencies of the detectors. 
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4.6. Calibration and Determination of Instrument Matrix 

As explained earlier in §3.1.1., the output intensity (measured by the detectors) vector I 

can be linearly related to the input Stokes vector S by 

I = BS , (4.38)

where B is a 4 × 4 real matrix that is characteristic of the polarimeter at a given 

wavelength. With B known, the Stokes vector of an unknown input source can be 

easily established by measuring I and performing the matrix multiplication: 

S = B-1I . (4.39)

Hence, our next step will be to determine the instrument matrix B.  

Rewriting eq. (4.38) in an explicit form, we have 
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From the above expression, we see that the elements of matrix B can be established 

experimentally by calibration. If we send in light of known polarisation states (i.e. the 

Stokes vector of input states are known), and note the intensities registered by the 

detectors (vector I is the normalised intensities measured by the four detectors), the 

elements of B can be calculated by solving a set of linear equations simultaneously.  

To be more explicit, four different input states are prepared, sent into the 

polarimeter, and the intensities measured are taken down. Thus, we will have four sets 

of vectors I and S. Each row of matrix B with four unknown can then be obtained from 

the four sets of equations constructed using the corresponding I and S elements. 
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4.6.1. Stokes Vector of Prepared Input States 

We prepare the input states by placing a polariser, a half-wave plate and a quarter-wave 

plate in front of the polarimeter setup, as shown in Figure 4.7. Recall that from the 

previous section that the polarisation of light exiting the polariser wave-plates is 

⎟⎟
⎠

⎞
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⎝

⎛
⋅⋅≡

0
1

prep HWPQWP RR  , (4.41)

where prep  denotes the polarisation state prepared by us,  
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and  is the horizontally polarised light after the beam passes through the polariser.  ⎟⎟
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However, 
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By comparing the terms of eqs. (4.44) and (4.45), we arrived at 

( ) ( )ϕθϕ 24cos2cos1 −=s  , (4.46a) 

( ) ( )ϕθϕ 24cos2sin2 −−=s  , (4.46b)
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( )ϕθ 24sin3 −−=s  , (4.46c) 

keeping in mind that θ and φ are the angles of the half-wave plate and quarter-wave 

plate respectively, not the angles of the spherical coordinate system. The term s0 is of 

course just 1, since the Stokes vector is normalised. 

 

4.6.2. Calibration with Imperfect Optical Elements 

While we can easily determine the 16 elements of instrument matrix B from four 

prepared states, there is an alternative method which promises to reduce the errors of 

the matrix elements. It is an experimental reality that waveplates have some degree of 

wedge. In other words, the two surfaces of the waveplates are not perfectly parallel. 

This leads to two problems which we must confront: (i) the change in the phase 

retardance of the waveplates will not be the perfect π/2 for half-wave plate and π/4 for 

quarter-wave plate. As a result, our prepared states will not be exactly the states we are 

expecting. (ii) The direction of the beam will be slightly deflected as the waveplates are 

being rotated. This can have the effect of changing the detectors efficiencies, which in 

turn affect the values of the Stokes parameters computed from the detectors reading. 

 In order to minimise the errors contributed by the imperfections of the waveplates 

in general, we follow the calibration method proposed by Azzam et al. [22]. Instead of 

using a polariser, half-wave plate and quarter wave plate to prepare the input states, we 

remove the half-wave plate and use the polariser to set the degree of linear polarisation. 

As for the quarter-wave plate, we want to determine as much of our matrix elements as 

possible without using it.  

 Writing matrix B in terms of its columns, we have  

B = [BB1  B2B   BB3  B4B ] . (4.47)

The Stokes vector of incident linearly polarised light is given [22] by 



 50

SLP = [1  cos 2α  sin 2α  0]T , (4.48)

where the subscript LP denotes linear polarisation, the superscript T stands for 

transpose. The angle 2α is the spherical coordinates of the polarisation state in the 

three-dimensional space (recall that linearly polarised light lies on the equator), as 

shown in Figure 4.11. The factor of 2 in front is to account for the fact that any linear 

polarisation states is indistinguishable from one rotated by 180o.  

 

Figure 4.11: Stokes vector in terms of spherical coordinates. The 2 in front of α is to account for the fact 
that any linear polarisation state is indistinguishable from one rotated by 180o. 
 

 Substituting eqs. (4.48) and (4.47) into (4.38), we observe that  

ILP = BB1 + B2B  cos 2α + BB3 sin 2α . (4.49)

The above equation implies that the first three columns of the matrix B can be obtained 

without the quarter-wave plate (since it is responsible for introducing circular 

polarisation to the light). By rotating the polariser through an angle and collecting the 

readings for each of the detectors, we can fit the set of data to the eq. (4.49) to obtain 

the values of the elements in the first three columns of the instrument matrix. To put it 

in another way, the intensity readings for a detector – let’s call it detector i – are plotted 

out over the angle range. It is then fitted to the expression 

f(α) = bi1 + bi2 cos 2α + bi3 sin 2α , (4.50)
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to obtain the values of bi1, bi2 and bi3, which are the first three matrix elements of row i. 

Here, α is the angle of the polariser. The figures below show our results: 

 

Curve fitting of detector 1 readings to function f(α)
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Curve fitting result:
f(α) = 0.2551 + 0.1410 cos(2α) - 0.2013 sin(2α)

   

Curve fitting of detector 2 readings to function f(α)
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f(α) = 0.2657 + 0.1569 cos(2α) + 0.1977 sin(2α)

 
 

Curve fitting of detector 3 readings to function f(α)
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f(α) = 0.2411 - 0.1525 cos(2α) + 0.0012 sin(2α)

   

Curve fitting of detector 4 readings to function f(α)
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f(α) = 0.2378 - 0.1410 cos(2α) + 0.0024 sin(2α)

 
 
Figure 4.12: From top left and right, to bottom left and right: curve fitting of readings from detector 1, 2, 
3, and 4 to eq. (4.54). The values obtained for the variables bi1, bi2 and bi3 form the i-th row of the 
instrument matrix. 
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 The last column of matrix B is dependent on circularly polarised light, which has 

the Stokes vector 
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SCP = [1   0   0   ±1]T , (4.52)

where the subscript CP refers to circular polarisation, and the + and – sign apply to 

right- (RCP) and left- handed (LCP) polarisation respectively. Substituting eqs. (4.52) 

and (4.47) into (4.38) gives 

IRCP = BB1 + B4B  , (4.53)

ILCP = BB1 – B4B  , (4.54)

where the intensity vector I has been normalised with respect to the total counts. The 

two equations above can be combined to give 

BB4 = ½ (IRCP – ILCP) , (4.55)

 As we pointed out earlier, the imperfection of the quarter-wave plate will not allow 

us to generate the exact RCP and LCP state. The idea behind the method by Azzam et 

al. is this: instead of generating the exact RCP state (which is the north pole on the 

Poincaré sphere), the state generated will be slightly displaced. If we now rotate the 

polariser and the quarter-wave plate by 90o, the state which we generate will be exactly 

on the other side of the north pole, as shown in Figure 4.13 below.  

 

Figure 4.13(a): Instead of generating the exact circular RCP and LCP states, what we have instead is an 
elliptical-near-circular state (ENCS). By rotating it by 90o and averaging it with the former state, we will 
obtain a circular state. (b): Cross section of the Poincaré sphere. The two ENCS states of part (a) are 
actually located directly opposite each other on the sphere. Picture adapted from [22]. 
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 To obtain the desired data for a RCP state, we simply average the results we have 

for these two states. The same argument applies to the LCP state, which lies on the 

south pole of the Poincaré sphere. We have 

 

Polarisation 

States 

Apparent RCP Apparent RCP 

+ 90o

Apparent LCP Apparent LCP 

+ 90o

Waveplate 

Setting 

Polariser: 45o

QWP : 0o

Polariser: 135o

QWP : 90o

Polariser: -45o

QWP : 0o

Polariser: 45o

QWP : 90o

Detector 1  220 747 261 852 379 397 365 474

Detector 2  393 410 387 999 221 437 261 795

Detector 3  95 611 87 128 467 039 481 565

Detector 4  518 321 517 274 116 323 115 207

Total counts 1 228 089 1 254 253 1 184 196 1 224 341

Table 4.1: Photon counts of the apparent RCP and LCP states, with their counterparts that are rotated by 
90o. Their respective waveplate settings are given as well. They are used to compute the last column of 
the instrument matrix. 
 

After normalising the counts for each column, we get 
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where the prime which accompanies the polarisation states denotes that state is the 

apparent one instead of the exact state. 

Averaging the results of eq. (4.56) give 
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By perform eq. (4.55), we obtain the final column of matrix B. Thus, the complete 

instrument matrix is 
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CHAPTER 5 

 

 

Performing Tomographic Measurement 

 

 

 

5.1. Single-Qubit System 

Armed with the instrument matrix B-1, we can now translate the detector counts for any 

polarisation states into its corresponding Stokes vector. To gauge how accurate our 

polarimeter is in determining the polarisation states, we attempt to map out the 

polarisation states of the whole Poincaré sphere using the setup shown in Figure 4.6. 

The polariser and the quarter-wave plate are attached to a motor each, which are in 

turn connected to the computer. We take the quarter-wave plate through an angle of 

180o. For every degree of the quarter-wave plate, the half-wave plate is rotated through 

a complete revolution of 360o, pausing at every 2o to collect the photon counts for 20 

seconds. Thus, a set of data is collected over the whole surface of the Poincaré sphere. 

 

5.1.1. Results 

With this set of data, the Stokes vectors of the prepared states can be computed from eq. 

(4.46), using the angles of the half-wave plate and quarter-wave plate. On the other 

hand, the Stokes vectors are reconstructed from the detectors counts using eq. (4.39).  
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To characterise the accuracy of our results, we compute the Uhlmann fidelity11, F, 

defined by 

{ } 2

Tr ⎟
⎠
⎞⎜

⎝
⎛= prepreconprepF ρρρ  , (5.1)

where ρprep and ρrecon are the density matrices of the prepared and the reconstructed 

states respectively. For pure states, eq. (5.1) reduces [23] to  

{ }reconprepF ρρ ⋅= Tr  . (5.2)

which further simplifies to 

( )reconprep SSF
rr

⋅=
2
1  , (5.3)

for the single-qubit case. In eq. (5.3), prepS
r

 and reconS
r

 are the normalised prepared and 

reconstructed Stokes vectors. Essentially, eq. (5.3) gives us the projection of the reconS
r

 

onto , with 1 being a perfect match. prepS
r

Since the surface of the Poincaré sphere is two-dimensional, we compute the 

fidelity for all the corresponding Stokes vector and project it onto a flat surface with the 

longitudes and latitude as the coordinates. Recall from chapter one that the reduced 

Stokes vector is simply the Cartesian coordinates of a point in a three-dimensional 

Poincaré sphere. Hence, the longitude and the latitude are given as 

2
1

1
1 sincosLongitude ss −− ==  (5.4) 

3
1sinLatitude s−=  (5.5) 

The Stokes parameters s1, s2, s3 used in eqs. (5.4) and (5.5) are of course those of the 

prepared Stokes vectors, since they are what we prepared in theory. 

                                                 
11 We note that some groups use an alternative convention for fidelity, that is equal to the square root of 
the formula given by eq. (5.1). 



 57

The results are shown below in Figure 5.1 and we observed a minimum fidelity of 

0.994. 

 

Figure 5.1: A plot of the fidelity of the estimated states to the prepared states over the whole Poincaré 
sphere. The minimum fidelity achieved is 0.994. 
 

 In general, we observe that a central belt in the region of the equator has a slightly 

higher fidelity than surrounding region. This is hardly surprising, once we remember 

that in the calibration and determination of the instrument matrix, we use linearly 

polarised states (which fall on the equator of the Poincaré sphere) and the right- and 

left- circular states. Hence, we would expect these polarisation states to give us a more 

accurate match of reconS
r

 onto . prepS
r

 

5.1.2. Error Analysis 

One source of error for this experiment is the error of counting statistics. The number 

of photons generated from a SPDC process has a Poissonian distribution [24]. Hence, 

without even taking into account the efficiencies of the detectors, the photon counts 

have the characteristic Poissonian variance that is equal to itself.  
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 However, this error can easily be reduced by taking each measurement on a larger 

ensemble. By taking the photon counts over a 20 seconds interval, the minimum 

number of counts we get is around 6000, which give us an uncertainty of √6000 = ±77 

photons or ±1%. 

 We perform a simple error propagation to see the expected error of our instrument 

matrix as well as the reconstructed Stokes vector. 

 For the first three columns of the instrument matrix, we have the uncertainty from 

the curve fitting of the data to the curve of eq. (4.50). 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

±±−±
±±−±
±±±
±−±±

=

44

34

24

14

0002.00024.00002.01410.00001.02378.0
0001.00012.00001.01525.00001.02411.0
0002.01977.00002.01569.00002.02657.0
0002.02013.00002.01410.00002.02551.0

b
b
b
b

B  . (5.6)

The intensity vectors of eq. (4.56) are computed by dividing the counts of each column 

of Table 4.1 by its respective total count, i.e. Ij = Nj / NTotal. Hence, the variance of Ij is 

given by 
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where 
jNσ  is simply jN . And we have 
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⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

±
±
±
±

=
+′

0007.04124.0
0002.00695.0
0006.03093.0
0004.02088.0

90oPRC
I  
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⎟

⎠

⎞
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⎜
⎜
⎜

⎝

⎛

±
±
±
±

=′

0003.00982.0
0007.03944.0
0004.01870.0
0006.03204.0

PLCI  ,    . 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

±
±
±
±

=
+′

0003.00941.0
0007.03936.0
0005.02138.0
0006.02985.0

90oPLC
I (5.8)

Therefore, our instrument matrix and its inverse have the errors 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

±±±−±
±−±±−±

±±±±
±−±−±±

=

0005.01605.00002.00024.00002.01410.00001.02378.0
0005.01602.00001.00012.00001.01525.00001.02411.0

0006.00572.00002.01977.00002.01569.00002.02657.0
0005.00576.00002.02013.00002.01410.00002.02551.0

B  

(5.9) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

±±−±−±−
±−±±±−
±−±−±±

±±±±

=−

0008.01953.30003.00483.3001.0058.00003.00371.0
0009.08756.00005.09202.00005.04308.20001.05853.2
0001.07692.10001.07547.10008.06501.10002.05890.1

005.0008.1006.0008.1003.0993.00002.09933.0

1B  

(5.10) 

From our plot of fidelity, we pick the point with latitude of -58.5o and longitude of 282o, 

which has a relatively low fidelity of 0.994, and compute the uncertainty of its 

normalised intensity vector: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

±
±
±
±

=

0006.00735.0
002.0328.0
0008.01208.0
002.0478.0

I  . (5.11)

This gives us an uncertainty of ±0.005 for the fidelity of this particular state. Hence, our 

minimum fidelity is 99.4±0.5 %.  

 

5.2. Pair-Qubit System 

5.2.1. Setup, Electronics, and Data Collection 

In order to construct the density matrix for an entangled photon pair, we need to detect 

photon pairs that are correlated. For this purpose, another polarimeter similar to the one 
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we have discussed in the last chapter is built. The entangled photon pairs generated 

from SPDC are sent separately into two optical fibres, which are in turn connected to 

the two polarimeters.  

 We are interested to count the entangled photon pairs, and not just any photon that 

arrives at the detectors. In other words, whether we decide to count a photon that is 

registered in a detector depends on the condition of whether another photon is 

registered in one of the detectors of the other polarimeter at approximately the same 

instance. This conditional counting of photon pairs can be accomplished with an 

electronic circuit of AND gates and delay lines, combined with a computer program to 

set the time window for coincidence count.12 The computer program tells the computer 

to consider a pair of photons as correlated only if they are detected within the time 

window. In our experiment, the time window is set to be 6 ns. 

 Since our two polarimeters have four detectors each, there are sixteen possible 

coincidences between the detectors of the two polarimeters. A measurement of these 

sixteen coincidence possibilities is what we need to determine the sixteen elements of 

the probability density matrix of entangled photon pairs. 

 

5.2.2. Accidental Coincidences 

Just as the dark counts need to be corrected for in single-qubit experiments, we need to 

take into account the accidental coincidences in pair-qubits experiment. Due to the fact 

that several pairs of photons are being generated at the same time, two uncorrelated 

photons might be detected as coincidence. This is the phenomenon which we call 

accidental coincidence, and like the dark counts, they tend to raise all measured counts, 

thus giving a false impression of the actual ratio of the coincidence counts. 

                                                 
12 I would like to mention that credits for setting up the electronic circuits and writing the program to 
count the coincidences go solely to Alexander Ling. I did not participate in this part of the project. 
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 These accidental coincidences can be modelled by considering the probability for a 

detector to register a count during the time window of the coincidences [9]. Let Sp and 

Sq by the number counts registered separately by detectors p and q in the duration of t. 

Then, accidental coincidence between detector p and q, over a time period of t′, can be 

approximated as 

t
t

SS
c qp

qp ′
Δ

≈
τaccid

,  , (5.12)

where Δτ is the coincidence time window. 

 Before any measurement of the coincidence count, we first measure photon counts 

in all the eight detectors. The accidental coincidence is the computed and subtracted 

from subsequent coincidence measurement. For ease in calculation, we chose t = t′ so 

that eq. (5.12) reduces to  

τΔ≈ qpqp SSc accid
,  . (5.13)

We do not need to consider the dark counts in two-qubits experiments because they 

will not be registered by the counter program unless they are detected within the 

coincidence time frame, and the accidental coincidences for dark counts are extremely 

small. 

 

5.2.3. Results 

The SPDC source is used to generate the Bell state  

( )

( ).
2

1

,
2

1

VVHH

VHHV

±=Φ

±=Ψ

±

±

 (5.14)

For the singlet state −Ψ , 
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(5.15)

which has the density matrix 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

=ΨΨ −−

0000
0110
0110
0000

2
1  . (5.16)

Similarly, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=ΨΨ ++

0000
0110
0110
0000

2
1  , (5.17)

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

=ΦΦ −−

1001
0000
0000
1001

2
1  , (5.18)

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=ΦΦ ++

1001
0000
0000
1001

2
1  . (5.19)

 Repeating the same procedure outlined previously, we obtain the instrument 

matrices, A and B, for the two polarimeters.  
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⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−
−−
−−

=

843.0024.0555.0034.1
799.0005.0615.0067.1
027.0726.0584.0935.0

024.0736.0611.0961.0

A  , (5.20)

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−−−
−−

=

820.0064.0559.0925.0
799.0041.0619.0974.0
053.0861.0520.0065.1

053.0779.0650.0039.1

B  . (5.21)

Since the rows of the instrument matrices can be seen as the Stokes vectors of the 

calibration states, which in our case are the tetrahedron vectors, we can construct the 

POVMs for the two polarimeters, as given by eq. (2.16): 

∑
=

=
3

0

ˆ
4
1ˆ

k
kjkj aA σ  ,   j = 1, 2, 3, 4, (5.22)

where ajk is the jth row and kth column of the instrument matrix A (we choose to let k 

range from 0 to 3 instead of 1 to 4 so that the indices will match with those of the Pauli 

operators). Similarly, we have 

∑
=

=
3

0

ˆ
4
1ˆ

k
kjkj bB σ  ,   j = 1, 2, 3, 4, (5.23)

for polarimeter 2. 

 For the singlet state, our coincidences vector is 

CΨ- = (628, 13281, 20626, 19435, 17525, 965, 17664, 18643, 16669,  

         13776, 496, 13524, 11288, 16126, 17041, 415)T , (5.24)

where its terms correspond to the coincidence counts between the two polarimeters, 

shown in Figure 5.2. 

 We can now proceed to compute the density matrix for the singlet state −Ψ , by 

following the steps discussed in chapter 2. First, we need to calculate the 16  matrices, 

each of which is the tensor product of two Pauli operators, as given in eq. (2.21). Next, 

Γ̂
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Figure 5.2: A scheme showing the correlation in question for each component of the coincidence vector. 

 

we construct the 16 × 16 matrix W, given in eq. (2.23). The 16 μμ ψψ  are the tensor 

product between the two POVMs: 

ml BA ˆˆ ⊗=μμ ψψ  ,   l and m = 1, 2, 3, 4. (5.25)

 Finally, we take the inverse of matrix W and compute the desired density matrix 

using eq. (2.25) 

( )∑∑
= =

−Γ=
16

1

16

1
,

1ˆˆ
ν μ

μνμνρ CW  . (5.26)

The real components of ρ̂  are 

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−−
−

−−
−−

=−Ψ

006.0019.0027.0018.0
019.0540.0469.0026.0
027.0469.0464.0021.0
018.0026.0021.0003.0

ˆRe ρ  , (5.27)

while its imaginary components have a maximum value of 0.05. Figure 5.3 shows a 

plot of the density matrix. 
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Figure 5.3: Graphical representation of the reconstructed density matrix of our Ψ- state. The left plot 
shows the real part while the right plot shows the imaginary part. 
 

The fidelity of our matrix to the ideal −Ψ  matrix is 0.971 computed using eq. (5.1).  

 We do the same for other Bell states and obtain 

CΨ+ = (13161, 1100, 20712, 20264, 807, 17923, 18846, 16204, 14460,  

         15767, 13211, 372, 16630, 11033, 885, 17474)T , (5.28)

CΦ- = (11819, 23881, 7307, 7941, 24552, 7123, 11806, 9463, 5496,  

         6702, 23987, 10584, 7314, 2885, 7501, 23286)T , (5.29)

CΦ+ = (25143, 8525, 10478, 8844, 10425, 24302, 8396, 8626, 7356,  

         8910, 9099, 24592, 6262, 6353, 23614, 9483)T , (5.30)

And 

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−
−

−−
−−

=+Ψ

002.0042.0035.0020.0
042.0533.0471.0042.0
035.0471.0460.0029.0

020.0042.0029.0010.0

ˆRe ρ  , (5.31)
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523.0038.0027.0491.0
038.0015.0031.0017.0

027.0031.0048.0031.0
491.0017.0031.0540.0

ˆRe ρ  , (5.32)
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⎜
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⎛
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−−
−

=+Φ

002.0047.0030.0473.0
047.0012.0031.0035.0
030.0031.0014.0029.0

473.0035.0029.0506.0

ˆRe ρ  , (5.33)

Plots of these density matrices are given in Figure 5.4. The fidelity of +Ψρ̂ , −Φρ̂ , and 

+Φρ̂  to their ideal counterparts are 0.967, 1.023, 0.972.  

 

5.2.4. Error Analysis 

Adopting the same procedure as what we did for single-qubit system, we see that the 

errors of the two instrument matrices are 

  (5.39) 

⎟⎟
⎟
⎟
⎟

⎠
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⎜⎜
⎜
⎜
⎜

⎝
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002.0024.0004.0736.0006.0611.0002.0961.0
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  (5.40) 
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006.0799.0004.0041.0004.0619.0006.0974.0
002.0053.0004.0861.0004.0520.0004.0065.1

002.0053.0005.0779.0005.0650.0005.0039.1

B

Bringing these errors forward, give the elements of our density matrix an error of order 

0.001 to 0.003, while the uncertainty of our fidelity are: 97.1±0.4 %, 96.7±0.3 %, 

102.3±0.3 %, 97.2±0.3 %. 

 The deviations of our density matrices from their ideal cases are reasonably small, 

though they are slightly larger than the propagated error from the curve fitting and the 

Poissonian statistical noise of the coherent states. Factors that contribute to the 

deviations can come from the setup equipments, such as the minute fluctuation in the 

intensity of the laser. While this is also a source of errors for the tomographic 

measurement of single-qubit state, it appears that measuring the coincidence counts 

might have place a stricter demand on the equipments to be near-perfect. However, one 
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Figure 5.4: From top to bottom, graphical representation of the reconstructed density matrix of our Ψ+, 
Φ- , Φ+ state. The left plots show the real parts while the right plots show the imaginary parts. 
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should be able to improve on the density matrix reconstructed from the measurements 

by fine-tuning the experimental setup and attempting to model the intensity drift of the 

laser. 

We have followed the traditional method of error analysis, which involves 

propagating errors from their sources. We note in passing that James et al. [2] and 

Altepeter [9] have used statistical and numerical methods to predict the spread in the 

values of the derived quantities. 
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CHAPTER 6 

 

 

Conclusion 

 

 

 

We have given a detailed account of the procedure for assembling a polarimeter with 

no moving parts that is based on the tetrahedron POVM measurements. It is this very 

correspondence of the POVM to a set of regular tetrahedron vectors that makes our 

polarimeter optimal.  

The experimental results on the state estimation of single- and two-qubit systems 

using this polarimeter, have shown a consistently high fidelity. For two-qubit systems, 

the reconstructed density matrix is relatively close to the ideal case, and one should be 

able to further improve it by fine tuning the setup and taking into account other sources 

of errors. 

Our polarimeter is sensitive to low light intensity and hence will be helpful in many 

areas. In particular, we would like to point out that it can be used to realise a recently 

proposed protocol for key distribution in quantum cryptography [3, 4]. This protocol is 

based on minimal qubit tomography and it promises higher efficiency and noise 

tolerance, as compared to a 6-state protocol which also offers full state tomography.  

Although our state tomography experiment was done on single- and two-qubit 

system, it can be extended to any number of qubits. Of course, the number of 
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measurements needed to perform the tomography will grow exponentially with the 

number of qubits. This once again underscores the advantage of the minimal state 

tomography which we have implemented: only the minimal number of measurements 

that is required is taken.  
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Appendix 

 

 

 

A. Pictures of Experimental Setup 

 

Figure A1: Picture of the experimental setup. Beam from the SPDC source is collimated and split into 
two paths by the partially polarising beam splitter (PPBS). Notice that the both the quartz plate are 
rotated slightly. The half-wave plate (HWP) in the transmitted arm is rotated to 22.5o, while the quarter-
wave plate (QWP) in the rotated arm is at 45o. The lens units are connected to the detectors through 
optical fibres, and the detectors are in turn connected to the computer (not shown). Blue line represents 
the path of the light beam. 
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Figure A2: To generate the input states, the half-wave plate and quarter-wave plate are each fitted into 
the unit shown above and slotted into the empty holders before the PPBS (see previous figure). Rotation 
of the waveplates can then be controlled by the computer. 
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