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Summary

This document is a summary of my studies on the creation, characterization and use

of photon pairs that are emitted from a nonlinear optical material via the process of

Spontaneous Parametric Down Conversion (SPDC). In particular, I focus on photon

pairs that are in an entangled polarization state.

The past decade has witnessed an accelerated pace of research work on entangled

optical states because of their potential application as a new communication technol-

ogy. Communication protocols employing quantum states of light are generally grouped

under the heading of optical quantum communication. An optical quantum communi-

cation infrastructure will require sources of pure entangled optical states that are bright

and have a narrow spectral bandwidth. Such sources are not available yet.

In order to obtain such futuristic sources, the first step would be to examine the

factors governing the brightness of existing photon pair sources. In this thesis I derive a

model for the brightness of an experimental SPDC source. Predictions from the model

are in rough agreement with experimentally observed pair rates.

I also describe techniques to completely characterize photon pairs in their spectral

and polarization degrees of freedom. The spectral correlation from the photon pairs can

be used to infer the spectral character of the pump light used in SPDC and its effects

on the quality of entanglement in the generated photon pairs.

A minimal and optimal method of polarimetry is also described. This method is

capable of characterizing the Stokes vector of both single and multi-photon states. Max-

imally entangled states from the SPDC source are characterized using these techniques.

The maximally entangled photons were then used to generate states with idealized

noise characteristics, known as Werner states. Two novel and simple methods of gen-
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erating Werner states are provided. Both spectral and tomography methods were used

to characterize Werner states.

The non-classical correlations from entangled photon pairs are also useful for study-

ing the validity of classical models that try to describe quantum non-locality. One family

of such models may be tested against quantum mechanics via a Leggett Inequality. An

experiment doing so is described.

Finally I report on a field implementation of quantum key distribution using entan-

gled photon pairs.
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Chapter 1

Quantum Mechanics and

Communication

Advances in miniaturisation are beginning to allow the fabrication and manipulation of

physical systems which exhibit quantum effects. In the context of information technol-

ogy, this means that quantum systems can act as the physical carriers of information.

As a consequence, standard information theory (which is based on the properties of

classical objects) will need to be revised in order to consider any additional power and

functionality that quantum systems can bring to computing and information processing

[2, 3, 4, 5, 6, 7].

In order to appreciate the different effects of quantum and classical systems on

information theory, it is best to start by considering how information is encoded. In the

standard treatment of information theory, information is encoded in discrete storage

units called bits. The simplest system of encoding information is to use Boolean logic

where a single bit has two possible values: 0 or 1. A classical bit can have only one

value; it is either in the state 0 or the state 1. In standard information technology, the

bit is realized through a classical object such as a magnetic domain or an ink blot on a

piece of paper.

Now, a classical bit can also be encoded with the state of a spin-1
2 (or two level)

quantum system. This can be done, for example, by identifying 0 with the | − 1
2〉 state

and 1 with the |+ 1
2〉 state. It is also possible, however, to prepare the quantum system



2

such that its state is: α|+ 1
2〉+β|−

1
2〉, where |α|2+|β|2 = 1. The probability amplitudes α

and β are generally complex numbers. Essentially, the quantum system can encode any

superposition of the 0 and 1 states. The two level quantum system is an implementation

of a quantum bit or qubit [8] 1. Qubits are the building blocks of quantum information.

The superposition of states that was introduced in the above description of qubits is

a quantum phenomenon. Other quantum features that are exhibited by qubits include

entanglement, interference and non-clonability 2. Together, these effects have enabled

theoretical proofs showing that qubits can be exploited to enable specific tasks that are

either inefficient or impossible under classical information processing 3.

A prominent example of quantum information is the development of quantum algo-

rithms (such as the Shor algorithm [12] and the Grover search method [13]) that use

quantum systems to obtain an improvement in the efficiency of information process-

ing over classical methods. Another example of quantum information are the use of

non-clonability for secure transmission of classical information [14] (quantum key distri-

bution). Also interesting is the exploitation of quantum entanglement in showing how

to transfer quantum states between distant locations (quantum teleportation) [15] or to

increase communication channel capacity (dense coding) [16].

Public interest in this subject is spurred by the hope for faster information process-

ing and better security in data transmission. Consider the Shor algorithm which uses

qubits to carry out prime number factorization more efficiently than any known classi-

cal method. The ramification of the Shor algorithm was that the security of commonly

used encryption schemes relying on the intractability of prime number factorization (e.g.

RSA [17]) would be put into jeopardy by advanced quantum computers.

Apart from applications, this emerging field of study has provided a boost to research

into fundamental areas of quantum physics. For example, it is very intriguing to consider

1Quantum systems can also implement multi-level schemes of coding information. For example,
ternary systems are encoded via three level quantum systems called qutrits. N-level encoding schemes
are implemented via quNits. As with relatively new inventions the shorthand for quantum bit has
sometimes been “controversially” written as qbit [9, 10]. This thesis adopts the more popular qubit
terminology.

2The role these effects play is described in [2]. Non-clonability and entanglement are described in
sections 1.1 and 1.2 respectivelty.

3Not all problems faced by classical information can be solved with quantum methods. Although
the limits of quantum information are not yet known, computer scientists have suggested that a large
class of problems are intractable for both classical and quantum information processing [11].
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that quantum entanglement, which arises from the tension between quantum mechanics

and special relativity, can be used to prove security of data transmission [18, 19].

The formal name for the study of information science with quantum mechanical

properties is Quantum Information Theory, and it may be divided into two rough areas:

Quantum Computation and Quantum Communication. Quantum communication is

devoted primarily to studying the distribution of quantum states between spatially

separated parties, and the potential applications (like key distribution, teleportation and

dense coding) [6]. This thesis concentrates on the experimental aspects of generating

optical qubit states for quantum communication.

1.1 The start of quantum communication

Quantum communication started in the 1970s when Stephen Wiesner first mentioned

the use of quantum mechanics in communication security (although he published it

only in 1983 [20]). One of his original formulations was to use states of spin-1
2 particles

to encode unforgeable serial numbers in money. The subject, however, only rose to

prominence when Bennett and Brassard discussed their protocol for distributing secret

keys for encryption and decryption in 1984 [14]. Their protocol is called BB84, and it

solved the following problem: How do two spatially separated parties agree rapidly on

a shared random key in complete secrecy?

The insight provided by Bennett and Brassard was to show that the random bits (0s

and 1s) making up the key could be encoded in the polarization state of single photons.

Thus, if the polarization states of the single photon pulses are prepared and measured

randomly in two conjugate bases, these pulses could be sent between two parties who

will quickly build up a shared key that is completely random.

The secrecy of the key is derived from the no-cloning theorem [21, 22] and the

fact that individual photons are single quanta. The no-cloning theorem says that it

is impossible to perfectly copy an unknown quantum state. This can be viewed as a

consequence of the Heisenberg Uncertainty Principle which states the impossibility of

simultaneously measuring, with complete precision, the state of an unknown quantum

system in two conjugate bases. By measuring the photon state in one basis, information
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on its state in the conjugate basis becomes increasingly uncertain (lost). Hence, any

attempt to extract information from a single photon would result in changes to its

polarization state. Such eavesdropping attempts are revealed as errors in the final key.

Bennett and Brassard had provided the first example of a quantum key distribution

(QKD) protocol.

Due to a lack of single photon sources, initial demonstrations of BB84 were carried

out with weak coherent pulses [23]. These are laser light pulses that have been attenu-

ated to a very low intensity level such that the probability of finding a single photon in

each pulse is very small. The corresponding probability of finding two or more photons

is even smaller; however it is not zero. Surprisingly, this small probability was sufficient

to put into doubt the security of the original experimental demonstrations [24, 25, 26].

These doubts were put to rest when Norbert Lütkenhaus provided a security proof for

BB84 with weak coherent pulses in 2000 [27] 4. Since then, various commerical QKD de-

vices based on weak coherent pulses have appeared on the market 5, and QKD remains

the most mature quantum information application.

At the same time, QKD continued to hold the attention of physicists (as well as

computer scientists and mathematicians) with a new protocol suggested by Artur Ekert

in 1991 [18]. This protocol, called E91, pushed the “quantum” character of QKD further

by proposing that aspiring quantum cryptographers exploit the property of quantum

mechanics known as entanglement 6.

1.2 Qubit entanglement, very briefly

Entanglement is a feature of quantum mechanics in which the correlations shared be-

tween separate systems cannot be obtained from the states of the individual systems.

Effectively, these separate systems must be treated as the components of a larger object.

A precise mathematical description for the state of such a joint system can be written

4Single photon sources have since become less crucial for QKD since a key distribution protocol
based on decoy states was developed in 2003 [28].

5In 2001, a company called idQuantique started offering commercial QKD devices; it has at least
one serious competitor (MagiQ Technologies) at the moment.

6For a discussion of the differences between the E91 and BB84 protocols see chapter 8.
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(such as equations (2.3) and (1.1)), and Erwin Schrödinger was the first to call the joint

state an entangled state [29]. The simplest system that can be entangled is a bi-partite

system. Entangled bi-partite systems are commonly observed in atomic physics, e.g.

when treating the spins of two electrons 7.

A consequence of being in an entangled state is that there are correlations between

observable physical properties of the sub-systems. For example, it is possible to prepare

two electrons in a joint quantum state such that the electrons are always found to be

both in the spin-up state, or both in the spin-down state, for all measurement basis.

The entangled state |Ψ〉 of such an electron pair can be written as

Ψ =
1√
2

(
|+ 1

2 ,+
1
2〉 − | −

1
2 ,−

1
2〉
)

(1.1)

One way to think of this is that some composite systems, like the electron pair,

can provide the same random answer when asked the same question. In the context of

electron pairs, asking a question means putting an individual electron through a Stern-

Gerlach apparatus 8. The question can vary (i.e. the measurement basis, or orientation

of the Stern-Gerlach apparatus can rotate), and the individual answer (measurement

outcome) is always random: the individual electron is randomly spin-up or spin-down.

The feature of entanglement is that when the question is the same for both electrons

(same orientation of Stern-Gerlach apparatus), they always give the same answer (both

spin-up or both spin-down) 9. The difference in the measurement outcome for classical

and entangled systems is illustrated in figures 1.1 and 1.2.

An insistence on finding a cause-and-effect mechanism for the above results leads to

the following conclusion: the measurement outcome on one electron is influencing the

state of the other electron instantaneously. The realisation that the superluminal mech-

anism must hold even when the electrons are spatially separated made the phenomenon

very controversial (and popular), because it seemed to contradict relativity 10.
7Such examples are readily found in introductory texts such as in section 9.4 of the textbook by

Eisberg and Resnick [30]. They decribe a state for two electrons (the singlet state) that is actually
entangled, although they did not elaborate on its non-classical features.

8For a description of the Stern-Gerlach experiment, see the introduction to J. J. Sakurai’s textbook
[31].

9This example is adapted from the review article by Gisin and Thew [6].
10Special relativity forbids instantaneous influences between distant locations, and more generally,
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50 %
probability

(a) SourceS−G S−G

Classical Bi−partite System

(b) S−G S−GSource

Figure 1.1: Simple representation of a Stern-Gerlach experiment using an electron pair in a
classical state. Consider a source that prepares electron pairs only in the spin-up direction,
and where the individual electrons are interrogated by separate Stern-Gerlach apparatus (S-G).
In panel (a) the Stern-Gerlach devices on both sides are in the same basis as the prepared
spins. The measurement outcome for the individual electrons can be predicted with certainty
(represented by a solid outline for the electron) and are correlated. In panel (b), the Stern-
Gerlach apparatus measures a conjugate basis and the individual measurement outcomes and
the inter-electron correlations are random (dashed lines).

This tension between quantum mechanics and relativity was discussed extensively

by the trio of Einstein, Podolsky and Rosen (EPR) 11 [32]. The EPR trio concluded

that quantum mechanics must be incomplete (in a classical sense), and proposed that

additional local parameters are necessary for describing the state of physical systems.

These parameters would exert an influence that provided the illusion of instantaneous

effects. In principle, these parameters can be unknown (hidden), and a model that

described physical states with these parameters is a Local Hidden Variable (LHV) model.

Despite the efforts of EPR, entanglement was not widely investigated for several

decades although various theories (in particular by David Bohm [33] and Hugh Everett

[34]) were put forward to address the thorny philosophical issues that arose from the

EPR paradox. Widespread interest in entanglement only began after John Bell derived

prohibits the propagation of information at superluminal speeds.
11Historically, the EPR paper appeared first. Schrödinger invented the term “quantum entanglement”

(and his famous Schrödinger cat thought experiment) in a subsequent paper that was meant to discuss
the EPR article.
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(a) S−G S−GSource

Entangled Bi−partite System

50 %
probability

(b) S−G S−GSource

50 %
probability

Figure 1.2: Simple representation of a Stern-Gerlach experiment using an entangled electron
pair. Consider a source that prepares an entangled electron pair, and where the individual
electrons are interrogated by separate Stern-Gerlach apparatus (S-G). For any measurement
basis (panel (a)) the measurement outcome for the electron pair is alway both spin-up or both
spin-down (i.e same color), but occur randomly. This is true even if the Stern-Gerlach apparatus
have been rotated to a conjugate basis as in panel (b).

his famous theorem [35]. Bell’s theorem was important because it showed explicitly that

a physical theory based on local parameters could not reproduce all the predictions of

quantum mechanics 12. By working with probabilities, Bell showed that the observable

correlations between two systems described only by local parameters could never ex-

ceed a certain bound. This bound was known as Bell’s inequality and suggested how

experimental tests for the validity of models using local parameters might be carried

out.

Experimental tests [37, 38] were carried out in the 70s and 80s with modified Bell

inequalities, such as the Clauser-Horne-Shimony-Holt (CHSH) inequality [39]. In par-

ticular, the experiment by Alain Aspect and his co-workers [40] is accepted as showing

that observed physical correlations exceed Bell’s inequality, conclusively showing that

quantum correlations between distant systems are an observable fact of nature. How-

ever, this does not mean quantum mechanics and relativity are in conflict; it has been

shown that EPR’s concept of locality is a conjunction of special relativity plus classical

12This is discussed extensively by Bell in his book [36].
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assumptions about predictability of systems [41]. It is the additional classical assump-

tions that are not satisfied.

It should be kept in mind, however, that all current experimental tests of Bell’s

inequalities take place with imperfect experimental devices [42]. These imperfections

allow for loopholes in any argument about the lack of local parameters. For example,

experimental equipment often have low detection efficiency (detection loophole) [43], or

are not placed sufficiently far apart (locality loophole). The technical loopholes have

been covered in separate tests. For example, see the work of Rowe et al. [44] on the

detection loophole, and the separate publications by Weihs et al. [45] and Tittel et al.

[46] concerning the locality loophole. No experiment has yet been performed which is

completely loophole-free. The best that can be said currently is that the loopholes are

generally covered by reasonable assumptions that seem valid when the devices are under

careful control 13.

It is assumed, however, that the problem of loopholes can be resolved with better

technology and it is widely accepted that quantum mechanics is able to explain a larger

body of observed facts compared to classical theories based on local parameters (and

even some theories using non-local parameters! [47, 48]). A modern understanding

of quantum correlations is that it is simply a description of physical systems that are

naturally counterintuitive [49]. Furthermore, entanglement is beginning to be viewed as

a “resource” to be exploited in communications technology, because they can be used to

distribute quantum correlations over wide distances. Apart from the notable exception

of BB84, virtually all quantum communication requires entangled quantum states [6].

In fact, Bell’s inequalities now have relevance for technology since a violation of a Bell

inequality is the only way to distinguish between entangled and unentangled quantum

states without having to know the dimensions of the relevant Hilbert space [50].

13For example, the “fair-sampling” assumption is used to deal with the detection loophole. The
loophole arises because the experimental equipment have less than perfect detection efficiency. Hence,
only a subset of systems from an ensemble can be detected. Fair sampling assumes that the detected
systems are representative of the entire ensemble.
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1.3 Entanglement and quantum communication

The most basic entangled quantum system is a pair of qubits. For quantum communi-

cation, qubits are most easily implemented with single photons [7], primarily because

of speedy transmission. Furthermore, a photonic qubit can be conveniently encoded in

any of several degrees of freedom. A natural choice is polarization, and polarization-

entangled photon pairs are one of the most commonly implemented entangled photon

systems. Polarization-entangled photon pairs have been used in experimental demon-

strations of various quantum communication protocols like dense coding [51], telepor-

tation [52, 53] and quantum key distribution [54]. A good review of the subject of

entanglement based quantum communication is provided by Gisin and Thew [6].

One of the grand challenges in applied quantum communication is to build a robust

and wide-spread communication network based on quantum protocols. Such a network

will require a bright source of high quality entangled photon pairs. Furthermore, in an

extensive quantum communication system there will be a need for signal repeaters and

current proposals call for such devices to be based on atom-like systems [55, 56]. This

means any entangled light will have to be in a sufficiently narrow spectrum (tens of

MHz) to interact with atomic memories and repeaters 14.

Future sources of entangled photon pairs will need to meet three criteria: high

brightness (large rate of photon pairs), high quality of entanglement (large violation

of a Bell inequality), and narrow bandwidths (large coherence times). This can be

visualized by the Venn diagram in figure 1.3. Currently, no source of entangled light

is able to meet all three criteria. For example, parametric downconverters based on

nonlinear optical crystals [61, 62] produce high quality entangled photons but have very

broad bandwidth (about 1 THz), and so their spectral brightness (brightness per unit

of frequency) is quite low. A summary of contemporary photon pair sources is provided

by table 2.1 in the next chapter.

To be able to supply entangled light for future quantum information applications,

the first step is to study contemporary photon pair sources and understand the limits

14Many experimental approaches are being investigated in this subject, such as the use of atomic
vapors [57] and atomic ensembles [58, 59, 60].
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high quality
entanglement

Entangled light sources

narrow
bandwidth

brightness
high

Figure 1.3: Criteria for evaluating entangled light sources. Three ways of evaluating entangled
light sources are to look at their brightness, the quality of their entanglement and the narrowness
of the spectral bandwidth of the generated light. An ideal light source will be rated highly in
all three areas (and should lie in the shaded region in the centre of the figure). Sometimes
brightness and bandwidth are considered together as ‘spectral brightness’.

to their spectral brightness. Also techniques must be developed to characterize the

states of the generated light. At the same time, it is possible to experimentally validate

quantum communication proposals and carry out further investigations into the nature

of entanglement.

The above issues are addressed within this thesis which is roughly divided into

two parts - building the source and applications for photon pairs generated by the

source. The bulk of the thesis concerns the implementation of a source of polarization-

entangled photon pairs (based on nonlinear optical crystals), and the characterization

of the generated photon states (chapters 2 to 6). Chapter 2 provides a description of

the source, while chapter 3 describes a physical model giving absolute emission rates

from the source. Techniques for characterizing the correlations in the polarization and

spectral degrees of freedom are described in chapters 4, 5 and 6. These techniques will

reveal that the photon pairs produced by the experimental source are of a very high

quality.

The second part of the thesis, focusses on experiments that use these highly entan-

gled photon pairs. Chapter 7, describes how the photon pairs are used to implement

idealized states known as Werner states. A field demonstration of QKD was also per-
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formed with a miniaturized photon pairs source, and this experiment is described in

chapter 8. We return to the lab with chapter 9 which describes a project to provide ex-

perimental falsification of a class of non-local variable models via the Leggett inequality.

The subject matter of this thesis depends heavily on a consistent description of

polarization states. Such polarization states are most conveniently expressed in a vector

notation, and one may choose between the Stokes notation (for all polarization states),

or Jones notation (for pure polarization states only). A brief introduction to the vector

notation used in this thesis is provided in Appendix A.

Many of the results reported in this thesis will have been reported already in sev-

eral published papers [63, 64, 65, 48, 66] (see Appendix C). The basic layout of this

manuscript is such that the material for each chapter is often drawn from a published

paper. The text has been altered so that the material can be read smoothly from

beginnng to end, and also for consistency of notation and references.
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Chapter 2

A Polarization-Entangled Photon

Pair Source

Quantum communication uses the states of quantum systems that have been distributed

between distant locations, and virtually all quantum protocols (apart from BB84) re-

quire entangled quantum states. The simplest and most commonly used entangled state

is composed of two qubits. Qubits are described by a two dimensional Hilbert space,

and are easily realized by the states of spin-1
2 systems such as the spin of electrons.

For the purposes of communication, it is natural to use the fastest travelling qubits

and these are states encoded using photons (which are single light quanta). Apart

from speed of transmission, other advantages of using photons exist. For instance, in

free space, photons are only weakly coupled to the environment and so can travel long

distances without their polarization state being lost (i.e. decohering).

Another advantage of using photonic qubits is that the qubit state is not restricted

to the polarization degree of freedom. For example, there has been experimental im-

plementions of entangled states based on time-bin qubits [67, 68] (this is based on

the concept of time-energy entanglement first suggested by J. Franson [69]). Time-bin

qubits are especially suited for quantum communication over optical fibers, and this

has been demonstrated for fiber-based QKD [70, 71] and quantum teleportation [72]

(polarization based qubits would decohere rapidly in such an environment). However,
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polarization qubit states are easier to manipulate and detect 1. The quantum commu-

nication projects considered in this thesis are also free-space applications 2 and so my

focus will be on qubit states realized via photon polarization.

This chapter is divided into four main parts. In the first section, we briefly review

the different physical processes that can be used to build sources of correlated (and

entangled) photon pairs 3. In the second section, an experimental implementation of

a source of high quality polarization-entangled photon pairs is provided 4. The third

section gives a method to quantify the entanglement. The chapter ends with a brief

remark on the brightness and quality of the implemented source and compares it to

other sources that have been reported in the literature.

2.1 Sources of polarization-entangled photon pairs

The first experimental sources of polarization-entangled photon pairs were implemented

with atomic-cascade decays in order to violate a Bell inequality at distant points [37, 38,

40]. Beginning in 1987 quantum correlations were also observed between photon pairs

that were emitted from nonlinear crystals that are pumped with with intense coherent

light [74, 75]. In fact, nonlinear optics (achieved using bulk crystals or atomic vapors)

is now the basis for most entangled photon sources.

The strongest physical process leading to emission of photon pairs from a nonlinear

crystal is called Spontaneous Parametric Down Conversion (SPDC) 5. It is a three-wave

mixing process that utilizes the lowest order nonlinear susceptibility in birefringent

crystals. This susceptibility is labelled as χ(2) and its mathematical representation is

a tensor of rank 2 6 The phenomenon was first predicted in 1961 by Louisell and his

1This is because the manipulation of polarization qubits requires the same equipment (e.g. wave-
plates) and methods as in classical optics, and many of these techniques have been well understood
since at least the 19th century. A historical development of optics is provided in many standart texts
such as the one by E. Hecht [73].

2Chapter 8 describes a free-space QKD experiment.
3The first step to obtaining entangled photons is to find a physical process that gives rise to photon

correlations.
4This includes equations that describe the entangled state.
5Early literature on SPDC referred to the process by many names, such as parametric fluorescence,

or parametric scattering.
6A full description is given in chapter 2 of the classic text by Y. R. Shen [76].
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co-workers [77]. In general, SPDC is any mechanism that causes a single parent photon

to decay into lower energy daughter photons. In this thesis, however, SPDC will be

identified with the χ(2) process.

The theory of SPDC was formally established by Kleinman [78] and independently

by Klyshko (whose work was compiled into a textbook [79]). A modern quantum me-

chanical derivation was provided by Hong and Mandel in 1985 [80].

The essential feature of SPDC is that a single pump photon passing through a uniax-

ial nonlinear optical material can decay into two daughter photons obeying energy and

momentum conservation 7. These daughter photons will be correlated in momentum,

energy and time. These two downconverted photons may be of the same polarization

(type I downconversion) or of orthogonal polarization (type II downconversion). The

standard technique for detecting photon pairs is the timing coincidence method that

was first demonstrated in 1970 by Burnham and Weinberg [81]. Generally, the photon

pairs display only classical correlations; special steps need to be taken to ensure that

they become entangled and this is described further in the next section.

Over the last two decades the design of SPDC sources has become more refined

resulting in less complicated setups. For instance, the original SPDC-based sources

[74, 75, 82, 83, 84] needed polarization independent 50:50 beam splitters in order to

convert correlated photon pairs into entangled states. The need for such beam splitters

was removed with new source designs by Kwiat and his co-workers in 1995 [61] and 1999

[62]. In particular, the design introduced in 1995 utilised the concept of noncollinear

type II phase matching, where photon pairs were emitted from a single downconversion

crystal in an entangled polarization state.

The similarity shared by all the bulk crystal sources above was that the conditions

for SPDC were satisfied through a technique called critical phase matching (CPM).

With this technique the emission angle of a particular wavelength is selected by tuning

the angle between the optical axis of the crystal and the pump beam. In most of such

cases the experimentalist can only access smaller elements of the χ(2) tensor, and pair

generation also suffers from a reduced interaction length because of walk-off effects. The

7The probability of a pump photon decaying is on the order of 10−12 for every mm of nonlinear
crystal material; see section 3.3.
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overall result is a reduced rate of photon pair production.

The conditions for SPDC to take place can also be achieved through a technique

called quasi-phase matching (QPM). Quasi-phase matching was first described by Arm-

strong et al. [85] and independently by Franken and Ward [86]. In QPM, frequency

conversion is enhanced via some kind of periodicity in the nonlinear material. This

periodicity can be introduced by alternating the orientation of the crystal optical axis

between two directions. Such crystals are known as periodically poled crystals. Fre-

quency conversion with QPM has two advantages over methods using unpoled crystals.

First, quasi-phase matching gives the experimentalist access to larger elements of the

χ(2) tensor. The other advantage is that the interaction length can be increased as

walk-off effects are minimized. The primary application of QPM is in second harmonic

generation [87], which provided the main motivation for research on the production

of crystals with a periodic poling structure. However, periodically poled materials are

being increasingly used for SPDC as well.

The first sources exploiting quasi-phase matching to obtain entangled photon pairs

were implemented in 2001 [88, 89]. Engineering difficulties at first restricted periodic

poling to small waveguide structures. Bulk periodically poled crystals have since become

available, leading to simpler alignment criteria and also higher quality entangled photon

pairs [90, 91, 92, 93]. All these sources display much better spectral brightness compared

to sources based on angle phase matching. These sources, however, are sensitive to the

crystal poling period, and thus to temperature fluctuations which must be controlled

during an experiment. Historically, they have suffered from being unable to compete

with unpoled crystal sources when it comes to entanglement quality. It was only in

2007, that a periodically poled crystal source (built by Fedrizzi et al. [94]) had been

able to achieve a competitive quality of entanglement 8.

Another process known as Four-Wave Mixing (FWM) has been demonstrated to

produce entangled photon pairs [97]. This is a process that utilizes the χ(3) susceptibil-

ity. Although FWM experiments had been carried out before to demonstrate quantum

8In an interesting twist, it has been shown that confining SPDC to waveguide structures can enhance
the rate of photon pair production [95, 96], and periodically poled waveguides are likely to return to
the centre of attention in future research on entangled light sources.
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correlations (as in squeezing experiments from atomic vapors [98]), the modern experi-

ments are geared towards generating telecom wavelength photon pairs. In these modern

schemes FWM generally takes place inside a micro-structure (photonic) fiber, where two

pump photons are parametrically scattered into two other photons of different energies,

obeying energy conservation. In a recent experiment, Fan et al. [99] reported a mea-

sured pair generation rate of 7000 pairs s−1 using only 300µW of pump power in a

1.8m spool of fiber that was at room temperature. Four-Wave Mixing appears to be a

promising method for correlated photon pair generation.

From the above discussion it will be seen that there are several alternatives for

obtaining entangled photon pairs from nonlinear optical methods, even when considering

SPDC based sources alone. When the research work described in this thesis began in

2004, the choice was made to study the brightest and highest quality entangled photon

pair sources in existence and at the time this was the 2001 design by Kurtsiefer et al.

[100]. This was a modification of Paul Kwiat’s 1995 source where the spectral bandwidth

of the entangled photon pairs was optimized by manipulating the coupling of photon

pairs into single mode fibers.

2.2 The experimental implementation

2.2.1 Basic principles of SPDC

SPDC is a three wave mixing process where a pump photon passing through a nonlinear

optical crystal has the probability of being converted into two daughter photons. Here it

is assumed that the three mixing waves are plane waves (in the next chapter the mixing

waves will be treated as beams). In type II downconversion, the daughter photons

may be identified according to their polarization with respect to the crystal axes and

labeled as ordinary or extraordinary. However, the choice is made to follow convention

in nonlinear optics and label the downconverted photons as the signal photon (index s)

and the idler photon (index i). The idler photon is identified as extraordinary polarized,

and as having the same polarization as the pump (index p). In the laboratory frame

of reference the extraordinary polarization is the same as the vertical polarization state

|V 〉 (Appendix A).
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Figure 2.1: Spontaneous parametric downconversion for fixed signal and idler wavelengths
under type II phase matching conditions. The emisison may be collinear with the pump field
direction, or noncollinear (shown in this diagram). Here, the cones overlap at two points.
Degenerate twin photons that are emitted in these overlap regions are indistinguishable apart
from their polarization states, and will be polarization-entangled. This figure is adapted from
reference [61].

The frequencies of the three fields are written as ωp,s,i. In the same way, the wave

vector of the fields can be expressed as kp,s,i. The energy and momentum conservation

rules are:

ωp = ωs + ωi (2.1)

kp = ks + ki (2.2)

For type II downconversion the degenerate twin photons are emitted in two cones.

One cone is ordinary polarized while the other is extraordinary polarized. The opening

angle of each cone depends on the angle that the pump field makes with the crystal

optical axis; this angle is labeled as θp. At one value of θp, degenerate collinear emission

is obtained. This occurs when the two cones overlap exactly at one point (i.e. in the

pump beam direction). In this direction, the products of a single pump photon decay

are emitted in the direction of the parent photon.

Further increase of θp causes the cones to move towards each other and they will

intersect at two points centred around the pump beam. Degenerate emission at these

two intersection points is essentially indistinguishable except for the polarization states.
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Thus, two possible decay paths for the pump photon are now indistinguishable at

the intersection points. This is the reason why the photon pairs are generated in a

polarization-entangled state and is the most important point about Kwiat’s 1995 de-

sign. A schematic of the source emission profile is shown in figure 2.1.

The polarization-entangled state emitted directly from the crystal in these two di-

rections may be written as follows:

|ψ〉 =
1√
2

(
|H1, V2〉+ eiφ|V1,H2〉

)
(2.3)

The subscripts 1 and 2 are labels for the collection arms in the experiment (figure

2.2). Crystal birefringence introduces a relative phase φ, between the ordinary and

extraordinary polarized light. Global phases may be ignored. In section 2.3 I will

describe the correlations existing in polarization-entangled states in greater detail.

In addition to the relative phase φ, crystal birefringence also adds transverse and

longitudinal walk-off. Longitudinal walk-off refers to the fact that the ordinary and ex-

traordinary polarized light have different velocities inside the crystal, and can become

distinguishable in principle because of the relative delay that is introduced by travelling

through the crystal. Transverse walk-off refers to the fact that the ordinary and ex-

traordinary light have different propagation directions and become separated by some

distance after crossing the downconversion crystal. It is possible to completely correct

for longitudinal walk-off and at the same time set the value of the relative phase φ by

using additional birefringent crystals that are half the length of the pump crystal 9.

After correcting for walk-offs, it is possible to obtain any of the four maximally

entangled Bell-states from the source by having additional half-wave and quarter-wave

plates in each of the arms of the source:

|ψ±〉 =
1√
2

(|H1, V2〉 ± |V1,H2〉) (2.4)

|φ±〉 =
1√
2

(|H1,H2〉 ± |V1, V2〉) (2.5)

9These additional crystals are called compensators, and a comprehensive explanation is provided by
Rubin et al. in reference [101]. At the same time, the compensators also correct partially for transverse
walk-off.
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Figure 2.2: A fiber-coupled polarization-entangled photon pair source. The fiber modes are
mapped onto the two intersection points in the SPDC emission. Half-wave plates and compen-
sating crystals perform correction for longitudinal walk-off. The bandwidth of collected light is
determined by the acceptance angle ∆θ of the fiber modes. This figure is adapted from reference
[99].

Photon pairs from the source can then be collected into single mode optical fibers

so that the photons can be sent downstream to other optical devices for further ma-

nipulation and detection. The basic experimental setup is shown in figure 2.2. The

pump beam is 351.1 nm light from an Argon ion laser (Coherent Innova 320C). The

downconversion medium was a 2 mm thick β-Barium Borate (BBO) crystal that was

cut so that the angle between its optical axis and crystal face was at 49.7◦. Degenerate

SPDC light at 702.2 nm emitted from the intersection points is coupled into single mode

fibers that guide the light to further optical devices. The waist of the collection modes

was designed to be 82 microns, and the pump waist was matched to this value. Single

photons were detected by passively quenched silicon avalanche photo-diodes. The ob-

served rate of pairs that are collected into the fibers was observed to be approximately

800 pairs s−1 mW−1.

2.2.2 Optimizing for collection bandwidth

One of the optimization steps when building a fiber-coupled SPDC source is to fix the

bandwidth of collected light, following the optimization procedure in [100]. The first

step in the optimization procedure is to approximate the collection mode of the single

mode fiber with a Gaussian beam (figure 2.3). Every collection mode is defined by a

beam waist, W . The waist, wavelength λ and divergence angle θD of the collection

mode is related through the following expression: W = λ/πθD.
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Figure 2.3: Bandwidth optimization with single mode fiber collection. The collection mode
waist, W , and angular divergence, θD, is determined by the desired bandwidth of SPDC light
that is to be selected. The pump is restricted to areas of the crystal that are observed by the
fibers and this means matching it to the collection mode.

The next step is to consider the emission angle for different frequencies of light.

This is obtained by assuming perfect phase matching of the interacting plane waves.

For BBO crystals, pumped with 351.1 nm, the emission angle for wavelength in the

neighborhood of the degenerate emission is given in figure 2.4. The rate of change of

emission angle with respect to wavelength, |dθ/dλ|, is found to be 0.055◦ nm−1 [100].

The intensity distribution of a Gaussian profile is

I(θ) ≈ exp(−2θ2/θ2
D).

It is now possible to relate the spectral bandwidth of collected light to the characteristics

of the collection mode. For example, if the aim is to collect light whose spectral band-

width has a Full Width at Half-Maximum (FWHM) of 4 nm, the expected divergence

angle is given by

θD ≈ ∆λFWHM/
√

2ln2× |dθ/dλ| = 0.186◦.

This would be the divergence angle that is used in the experiment, if all conditions

satisfied perfect phase matching. These conditions, however, are not met in the experi-

ment as there are various effects that act to broaden the spectra of the collected light.

One of this is the effect of transverse walk-offs, and the presence of some wave-front
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Figure 2.4: The emission profile of degenerate SPDC light at 702.2 nm. The emission profile
calculated by assuming perfect phase matching and a plane wave pump beam is presented in
(a). The emission angle for different SPDC wavelengths in the plane φs,i = 0◦ is shown in (b).
The slope of the emission angle |dθ/dλ| at 702.2 nm is estimated to be 0.055◦ nm−1.

curvature in our pump beam 10. Another effect is due to the non-collinear geometry

that is used 11. To compensate for these, and other effects, the experiment was designed

with a smaller divergence angle instead. The final selected angle was θD = 0.16◦. This

corresponds to a beam waist of 82 microns which in the ideal case leads to collected light

whose spectral FWHM is 3.4 nm. However, this value must be augmented by a correc-

tion factor due to the non-collinear geometry that is implemented in the setup. This

correction factor is determined in Appendix C and it is found there that the FWHM

is broadened by 13% compared to the ideal case. After correcting for this, the final

expected spectral bandwidth is approximately 4 nm.

The pump mode is restricted to illuminate only parts of the crystal from which light

is collected, and hence is matched to the collection mode 12. It is necessary to keep the

Rayleigh range of the pump and collection modes to be at least the crystal length. Only

then will the approximation of plane waves (and a lack of wavefront curvature) from

10For a drastic example of how spectral bandwidth can be affected by wave-front curvature see [102].
11This spectral broadening effect of non-collinear phase matching is described in section 3.2.3 and

illustrated in figure 3.2.
12This is actually not the optimal pump mode. For maximum count rate, the pump beam waist

should actually be about 71% of the the collection waist. This is described in section 3.2.6.
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Figure 2.5: The spectra of SPDC light collected into the two single mode fibers. The FWHM
of the collected spectra is 4.5 nm. The resolution of the spectrometers is approximately 0.25 nm.

the model be valid to our experimental setup. The Rayleigh range of 702.2 nm light in a

beam of waist 82 microns is zr = πW 2/λ ≈ 30 mm and is larger than our crystal length

of 2 mm (and so the approximation should be valid).

The measured spectrum is shown in figure 2.5. The spectra was obtained from a

simple grating spectrometer, with an estimated resolution of 0.25 nm. The Full Width

at Half-Maximum (FWHM) of both spectra is 4.5 nm, and the peaks are centered at

702.5 nm (λ1) and 702.8 nm (λ2). The small offset in the central wavelength of both

peaks may be attributed to residual mis-alignment of the collection modes. The col-

lected downconversion bandwidth is still larger by about 0.5 nm despite the use of the

correction factor obtained in Appendix C. This is probably due to a combination of

spectrometer resolution, and unaccounted for physical effects suchas pump wave-front

curvature.

2.3 Measuring the entanglement quality of a photon pair

Consider the singlet Bell state that is obtained after compensation for longitudinal walk-

off: |ψ−〉 = 1/
√

2(|H1V2〉 − |V1H2〉). This state cannot be factored into simple product

states consisting of two photons, i.e. |ψ−〉 6= |A1B2〉 where A and B denote arbitrary

polarization states. This non-separability means that the state of one photon cannot

be described without a reference to its twin. Indeed, a measurement of the polarization



2.3. MEASURING THE ENTANGLEMENT QUALITY OF A PHOTON PAIR 23

state of the photons in only one arm (that ignores their twins in the other arm) will

yield a randomly polarized state. Hence, the two particles are said to be in an entangled

state of two photons.

Suppose that the polarization state of the photon pair is tested in the HV polar-

ization basis, there will be only two possible outcomes: |HV 〉 or |V H〉 (the subscripts

1 and 2 are dropped as the ordering is sufficient to indicate which arm is being referred

to). The first outcome is obtained when a polarizing filter transmiting |H〉 is placed

in arm 1, and another polarizing filter transmiting |V 〉 is placed in arm 2. The second

outcome is obtained when both polarizing filters are rotated by 90◦. Both outcomes are

detected with equal probability, and the polarization states are always anti-correlated,

i.e. if both polarizers transmit |H〉 or |V 〉 no photon pairs are detected.

The anti-correlation is present for different polarization bases as well. As a simple

example, consider the ±45◦ basis that is achieved when polarizers in both arms are

rotated from the HV basis by 45◦. The original states |H〉 and |V 〉 can be expressed in

the ±45◦ basis as:

|H〉 =
1√
2

(|+〉+ |−〉) , |V 〉 =
1√
2

(|+〉 − |−〉) (2.6)

Hence, the singlet state is also

|ψ−〉 =
1√
2

(| −+〉 − |+−〉) , (2.7)

with the same anti-correlation behavior in the ±45◦ basis.

In the actual experiment, each polarizer is a combination of one half-wave plate

(HWP) and a polarizing beam splitter (PBS) set to transmit only |H〉. The only

interesting outcome given a pair of HWP angles α1,2 is Hα1Hα2 which has a detection

probability P (Hα1 ,Hα2), expressed as

P (Hα1 ,Hα2) = |〈Hα1Hα2 |ψ−〉|2. (2.8)

Equation (2.8) can be reduced to a simple trigonometric function of the angles α1,2.

This is easiest to work out by using the Jones vector notation (Appendix A) where
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polarization states are represented by column vectors, and the measurement operators

are denoted by matrices. In the Jones notation, the |H〉 and |V 〉 states are denoted by:

|H〉 =

 1

0

 , |V 〉 =

 0

1

 (2.9)

A clockwise rotation by α is represented by the transformation matrix:

R =

 cosα − sinα

sinα cosα

 . (2.10)

To detect a photon in the state |Hα〉, the HWP in front of the polarizing filter is

rotated by an angle α, such that its Jones matrix is 13

 cos 2α − sin 2α

− sin 2α − cos 2α

 , (2.11)

and the state |Hα〉 is:

|Hα〉 =

 cos 2α

− sin 2α

 = cos 2α|H〉 − sin 2α|V 〉. (2.12)

The probability of coincidence detection is expressed as:

P (Hα1 ,Hα2) =
1
2
|sin 2 (α1 − α2)|2 (2.13)

In the above experiment, this detection probability can be identified with the relative

frequency of pair detection. A typical experimental test of the sine function is to fix

one angle (e.g. α1) while changing the other, and to measure the number of detected

photon pairs for each set of angles. The polarization basis is selected by the angle that

is fixed. In practice, the correlations are tested in two conjugate polarization bases,

since a sinusoidal dependence in only one basis is not evidence of an entangled photon

pair.

13A rotation by α for a HWP causes the basis to rotate by 2α.
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Figure 2.6: Scheme for checking polarization correlations between a photon pair. In each arm
the light is sent through a half-wave plate (HWP) and a polarizing beam splitter, before being
collected and sent to photon counting detectors. The angular setting of the HWP in one arm
selects for the polarization basis under test (HV or ±45◦). The HWP in the other arm is turned
by a full revolution, and for each angle of the wave plates the number of detected photon pairs
is noted.

In the absence of noise, the detected correlations should be described by a sine curve

with a perfect contrast. The primary effect of noise is to cause photon pair detection

where there should be none, reducing the contrast of the sine curve. The quality of the

state is determined from the contrast between the maximum Nmax and minimum Nmin

number of detected pairs with Nmin = 0 photon pairs described by a pure Bell state.

This contrast is also known as the visibility V,

V =
Nmax −Nmin

Nmax +Nmin
(2.14)

A set of measured experimental correlations is shown in figure 2.7 (the experimental

scheme used for polarization correlation is shown in figure 2.6). The visibility of the

correlation curve in the HV basis is found to 99.9 ± 0.6%, while the visibility in the

±45◦ basis is found to be 98.4 ± 0.7%. The very high measured visibilities in two

conjugate polarization bases is evidence that the source has generated a two-photon

polarization-entangled state with little noise and other systematic imperfections.

It is always interesting to consider whether the visibility can be further improved,

or a technical limit has been encountered. This requires an examination of the possible

sources of noise.
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Figure 2.7: Polarization correlations in two conjugate bases. The visibility of the correlation
curve in the HV basis (99.9%) is higher than that for the curve in the ±45◦ basis (98.4%). The
lower visibility in one basis is attributed to experimental alignment and compensation errors,
resulting in a residual distinguishability of the HV and V H decay paths.

One common noise source is accidental coincidences. Accidental coincidences arise

when uncorrelated single photons are detected simultaneously, and wrongly identified as

a valid photon pair. Accidental coincidences cause a higher background in the measured

polarization correlation curves, which leads to a lower visibility. The rate of accidental

coincidences ac is determined by the relationship:

ac = s1 × s2 × τ, (2.15)

where s1 and s2 are the rates of single photons in each arm, while τ is the timing-

coincidence window. After a detector has registered a photon arrival, the electronic

coincidence circuit waits for a time period τ to register a detection event from the other

detector. Only when two detectors fire within the time period τ a coincidence will be

counted.

However, accidental coincidences should affect visibility in both polarization bases

equally. From the measurements presented in figure 2.7, accidental coincidences can

account for at most 0.1 % of the drop in visibility. The remaining 1.5 % decrease in

visibility for the ±45◦ basis requires another explanation.

In fact, such a difference in visibility for different polarization bases is characteristic

of SPDC based photon pair sources. Typically, polarization correlations are very good
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in the natural basis defined by the crystal axes. High contrast correlations in other

bases must be achieved by using compensation crystals which correct for the relative

phase φ between the |H〉 and |V 〉 states (figure 8.4). This compensation, however,

is offset by dispersive optical elements like the collection fibers that introduce arbi-

trary phase shifts and polarization rotations to the photons they carry. To control

these unwanted dispersive effects, the optical fiber is passed through “bat-ear” polariza-

tion compensators (such as the Thorlabs Item# FPC031). These compensators work

through stress-induced birefringence and vector transport on the fiber material. One

interesting experimental observation is that the polarization compensators are unable

to work equally well for all polarization bases. Typically one basis will have an un-

wanted dispersion remaining at the 1 % level (this is true even for the highest quality

correlations observed with this source which was reported in chapter 9). This leaves a

remainder of 0.5 % in the visibility difference which must be due to misalignment of the

collection fibers.

2.4 Remarks on the source quality

In terms of brightness and entanglement quality, the entangled photon pair source de-

scribed in this chapter is one of the best sources based on Kwiat’s 1995 design. The qual-

ity of the correlations produced also compares favorably with the output from sources

based on quasi-phase matching although these newly developed sources have larger

spectral brightness.

It is useful to note that high quality entanglement is important for quantum commu-

nication protocols, especially in QKD where any noise is to be treated as evidence of an

eavesdropper. Hence, the performance of such protocols are not necessarily enhanced

by having a spectrally bright source that has only lower entanglement quality. Further-

more, some experiments that probe the fundamental nature of physics make stringent

demands on the quality of the correlations (chapter 9). The source described in this

chapter is able to satisfy the requirements in both applied and fundamental studies.

In this concluding section, a comparison of different photon pair sources found in the

literature is presented. Such a comparison is useful for charting the progress that has
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been achieved in the field of entangled photon sources as well as to note possible future

trends. The relevant parameters from the different sources are put together in table

2.1. In compiling the data, the parameters to be compared must be selected carefully

because in the literature, there is a proliferation of different figures-of-merit, that do

not receive consistent treatment. Table 2.1 attempts to do a comparison based on 3

different parameters: the normalized brightness of the source, the spectral brightness of

the source, and the entanglement quality of the generated photon pairs.

The entanglement quality is quantified by the visibility of polarization correlations

described in section 2.3. Normalized brightness is the observed rate of photon pairs

normalized to input power, and has units of pairs s−1 mW−1. In applications the actual

rate of detected pairs is a crucial quantity, and it is why table 2.1 does not contain rates

that have been corrected for experimental inefficiencies 14. Some of the earlier reports

do not include an input power and in these cases, the highest observed rate is reported

instead.

It is possible to obtain a value for the spectral brightness (units of pairs s−1 mW−1

MHz−1) of the source from its observed brightness. As was mentioned in chapter 1,

the spectral brightness will become an increasingly important parameter in advanced

quantum communication networks (section 1.3) utilizing atomic memories and repeaters

[6]. It is interesting to note that some sources that are observed to have a high rate

of photon pairs do not always have a large spectral brightness. Early sources [82, 84]

typically do not report a bandwidth for their photon pairs, and that is why they will

not have an entry for spectral brightness. It should also be noted that in many reports,

the bandwidth reported is based on the use of interference filters.

Although table 2.1 does not list every single reported photon pair source in the

literature, a few milestones over the last two decades may be noted. First, the entangle-

ment quality of modern photon pair sources is very high with polarization correlation

visibilities that are typically above 95%. Another development is that the observed rate

of photon pairs has been rising steadily. This higher brightness is attributed to both

improved technology (such as better nonlinear materials) and improved source design.

14For instance, it is often found that published rates were inflated by accounting for detector ineffi-
ciency and coupling losses. Such corrected rates, however, are not useful in actual applications.
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Between 1995 and 2001, the brightness of the sources increased by two orders of

magnitude primarily due to changes in source design. One variation of the 1995 Kwiat

design, which is implemented in this thesis, uses no interference filters and the pho-

ton pairs were collected into single mode fibers [100] 15. Since 2001, improvements in

fabrication technology has allowed for the manufacture of periodically poled materials

in which QPM can take place. Such materials have led to further improvements in

the spectral brightness by several orders of magnitude [94]. In particular, Fiorentino

et al. have experimentally demonstrated that confining QPM to waveguide structures

can lead to unprecedented levels of spectral brightness 16. A further theoretical anal-

ysis performed by Spillane et al. [96], found that photon pair sources based on nano-

photonic waveguides would yield an astounding level of spectral brightness correspond-

ing to 1700 pairs s−1 mW−1 MHz−1. These latest developments indicate that it is very

likely that in the future, the most dramatic improvements to entangled photon pair

sources will come from sources based on QPM inside waveguide structures.

For completeness, two sources of heralded single photons 17 have also been included.

These are the sources developed by Thompson et al. [1] and Neegard-Nielsen et al.

[104]. They are essentially photon pair sources and it is interesting to see that they

have achieved high rates of photon pairs within very narrow bandwidths.

15A physical model describing the expected pair rate is given in the next chapter.
16It should be noted, however, that the design of the Fiorentino source does result in entangled photon

pairs.
17Heralded single photons were first implemented using SPDC sources by Hong and Mandel [103].
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Comparing some Photon Pair Sources

Physical Observed Rate ‡ Entanglement Spectral Brightness Reporting Year

Process† (pairs s−1 mW−1) Quality∗ (pairs s−1 mW−1 MHz−1) Authors & Reference

Atomic

Cascade
3.8 pairs s−1 ≈ 84 % 0.1 Aspect et al. 1981 [105]

CPM 0.3 pairs s−1 > 76 % unavailable Ou et al. 1988 [82]

CPM 9 pairs s−1 > 99 % unavailable Kiess et al. 1993 [84]

CPM 10 > 97 % 3× 10−6 Kwiat et al. 1995 [61]

CPM 140 > 98 % 5× 10−5 Kwiat et al. 1999 [62]

CPM 900 > 96 % 3× 10−4 Kurtsiefer et al. 2001 [100]

FWM 120 > 93 % 3× 10−4 Li et al. 2005 [97]

QPM 8.2× 104 > 99 % 0.5 Fedrizzi et al. 2007 [94]

QPM 9.7× 105 unavailable 1.6 Fiorentino et al. 2007 [95]

QPM n.a. n.a. 1.7× 103 (theory only) Spillane et al. 2007 [96]

FWM 7× 103 > 97 % 5× 10−2 Fan et al. 2007 [99]

CPM 800 99.2± 0.6 % 3.3× 10−4 this thesis 2007

Table 2.1: Comparison of entangled photon pair sources. It is not meant to be a complete
record of all reported entangled photon sources. † The following abbreviations are used to
denote the different physical processes used in photon pair sources: Critical Phase Matching
(CPM), Four Wave Mixing (FWM) and Quasi-Phase Matching (QPM). ‡ The first three sources
are not normalized to input power and have their own set of units. ∗ Entanglement quality is
evaluated by the visibility of polarization correlations and is a unitless quantity. The source
that is described in this chapter is in the last row.

Heralded Single Photon Sources

Physical Spectral Brightness Reporting Year

Process (s−1 MHz−1) Authors & Reference

Atomic

Ensemble
5× 104 Thompson et al. 2006 [1]

QPM 1100 Neegard-Nielsen et al. 2007 [104]

Table 2.2: Characteristics of two heralded single photon sources. It is interesting to compare
the bandwidth of the heralded single photon sources to the spectral brightness of the entangled
photon sources. In this table, the bandwidth is used is because it is not always easy to define
the photon rate as a function of input power (e.g. for atomic systems like the one by Thompson
[1]).
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Chapter 3

Absolute Emission Rate of SPDC

into a Single Transverse Mode

The last chapter contained a description of an experimental implementation of a fiber-

coupled SPDC source and a simple bandwidth optimization method. This chapter

describes a mathematical model of the SPDC source in order to better understand the

key parameters controlling the absolute emission rate.

3.1 Introduction

The original studies that established the basic theory of SPDC [77, 78, 79, 80] treated the

participating light fields as plane waves. Such a treatment is sometimes inadequate for

analyzing modern SPDC sources. This is because many of the more recent applications

often necessitate significant manipulation and transport of the photon pairs; this is

achieved conveniently by guiding the light in single mode optical fibers (as described in

section 2.2).

The basic idea of modeling SPDC in this regime is to map the optical modes prop-

agating in the fibers into freely propagating modes of the electromagnetic field in the

nonlinear conversion material, where they interact with a pump field. These freely

propagating spatial modes can be described in good approximation by paraxial Gaus-

sian beams.

Previous studies of SPDC light coupled into single mode fibers have focused on op-
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timizing the coupling efficiency, defined as the ratio of photon pairs to single photons

that are observed because this is a quantity which can be measured easily in an exper-

iment. This quantity is important for developing loophole-free tests of Bell’s inequality

[106], heralded single photon sources [107, 108, 109], or simply sources of high pair

brightness[100].

So far, theoretical work in this area has focused mostly on such secondary param-

eters, and no closed expression for the absolute rate of photon pairs was available for

typical experimental configurations. This made it difficult to estimate whether a partic-

ular experimental source implementation could be improved with respect to a particular

figure-of-merit, be it total rate or spectral brightness.

This chapter presents an attempt at deriving a closed expression for the absolute

rate of SPDC emission from a bulk crystal into Gaussian modes. The effort is partially

successful; a closed expression is obtained for SPDC in the collinear geometry (see

equation (3.36)). The expression for the non-collinear geometry still has a numerical

component (see equation (3.34)).

The work connects to earlier investigations of absolute SPDC rates with beams of

finite diameter by Kleinman and Klyshko [78, 79]. It was found there that the overall

rate of pair production is independent of the spot-size of the pump beam [78], and

that the conversion efficiency of pump photons into correlated pairs integrated over all

emission directions [79] is in the order of 10−8 per mm of crystal made of a typical

non-linear material. The restriction on specific spatial modes defined by single mode

optical fibers in the more recent applications, however, made it difficult to relate their

results directly to experiments. The description here will apply both to Type I and II

phase matching conditions, and covers collinear and noncollinear geometries important

for the generation of polarization-entangled photon pairs [61, 62].

3.2 Model

Let us review in greater detail, the basic process of SPDC: the spontaneous decay of

a photon from a pump field into two daughter photons propagating in two —possibly

different— target modes, with the process being mediated by a material with a nonlinear
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Figure 3.1: A schematic of the downconversion model considered in this chapter. The pump,
signal and idler fields are treated as paraxial beams, with a Gaussian transverse intensity. The
focus of all beams coincide at the crystal. The x-axis is coming out of the plane of the diagram.
Coordinate systems of the signal and idler (xs,i, ys,i, zs,i) are rotated about the coordinate system
of the pump (x, y, z). This figure is adapted from reference [66].

optical susceptibility. The physical implementation of SPDC utilizes the lowest order of

the nonlinear susceptibility tensor χ(2). While energy conservation between input and

output photons typically allow the decay process to take place in many target modes,

phase matching requirements need to be engineered to allow conversion to take place

into any particular pair of directions.

The physical model of the three interacting optical modes is depicted in figure 3.1.

The pump beam and the target modes for the downconverted light are treated as prop-

agating paraxial beams with a Gaussian transverse profile. The beams overlap within

a nonlinear optical crystal of finite length l, with surfaces normal to the propagation

direction of the pump beam. Pump and target modes propagate in one plane, but

need not be parallel. It is further assumed that the three interacting modes overlap

in a region without a significant variation of the transverse profile along their respec-

tive propagation directions. This is a reasonable assumption for typical Gaussian beam

parameters and conversion crystal lengths used in experiments [100].

Following chapter 2, I refer to the target modes as signal (index s) and idler (index

i) and choose coordinate systems where the zs,i,p directions are parallel to the main

propagation direction for each mode s, i, p (p refers to the pump mode). The spatial

mode function of the electrical field for each of the modes can be written as

g(r) = eikz · U(x, y) = eikz · e−
x2+y2

W2 , (3.1)
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where k denotes the z-component of the corresponding wave vector, W the Gaussian

beam waist parameter, and x, y, z refer to the corresponding coordinate system for each

mode. The overlap calculations are simplified by using normalization constants α for

the envelope functions U(x, y) such that

α2

∫
dx dy |U(x, y)|2 = 1 (3.2)

in their corresponding coordinate systems, which implies

αp,s,i =

√
2

πW 2
p,s,i

. (3.3)

Note that the spatial mode function g(r) fulfills Maxwell’s equations only approx-

imately. For the calculations presented below, however, this poses no problem. Fur-

thermore, the dispersion relation connected with this mode function has a confinement

correction that is not so commonly recognized:

ω2 = c2
(
k2 +

2
W 2

)
(3.4)

Again, for practical beam diameters W of about 100 wavelengths considered in this

chapter, this correction term is small enough to safely neglect it.

3.2.1 Pump mode

The pump mode is aligned with the main coordinate system x, y, z, and treated as a

classical monochromatic field of amplitude E0
p . This is the semi-classical approach where

it is assumed that there is no significant depletion of the pump in the downconversion

crystal. The electrical field of the pump can thus be written as

Ep(r, t) =
1
2

[
E(+)

p (r, t) + E(−)
p (r, t)

]
(3.5)

=
1
2
[
E0

pepgp(r)e−iωpt + c.c.
]
,

with a polarization vector ep, and a corresponding angular frequency ωp. Using the

normalization expression (3.2), the electrical field amplitude E0
p is connected to the
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optical power P in the pump beam,

∣∣E0
p

∣∣2 = α2
p

2P
ε0npc

, (3.6)

where the refractive index for the pump field is np, the electrical field constant is ε0 and

the speed of light in vacuum is c.

3.2.2 Collection modes

The general propagation direction of the collection modes are fixed with respect to the

pump. By introducing collection mode angles θs,i, and using an orientation as indicated

in figure 3.1, the local coordinates of the collection modes are expressed in terms of the

main coordinates x, y, z used for pump and crystal boundaries:


xs,i

ys,i

zs,i

 =


1 0 0

0 cos θs,i ±sin θs,i

0 ∓sin θs,i cos θs,i




x

y

z

 (3.7)

Then, to arrive at a rate of photon pairs generated via SPDC, the fields in the col-

lection modes are quantized. Field quantization is done by introducing a quantization

length L in the propagation direction (for clarity in the counting of modes) and postu-

lating periodic boundary conditions; later this requirement is dropped. Following the

notation in equation (3.5), the electrical field operators take the form

Ês,i =
1
2
[Ê(+)

s,i (r, t) + Ê(−)
s,i (r, t)]

=
i

2

∑
ks,i

[√
2~ωs,i

n2
s,iε0

αs,i√
L

es,igs,i(r) e−iωs,it âks,i
+ h.c.

]
(3.8)

Here, es,i indicate the polarization vectors, and ns,i and ωs,i the corresponding refrac-

tive indices and angular frequencies of the collection modes. The collection modes are

indexed by ks,i, and the corresponding wave vector in the pump coordinates are given

by

ks,i = ks,i(∓ sin θs,iey + cos θs,iez). (3.9)
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Motivated by an experimental situation where collection modes will get coupled

into single mode optical fibers, one can work with only one transverse mode, and the

longitudinal wave vector components ks,i serve as a complete, discrete mode index ks,i =

2πms,i/L with integer numbers ms,i. The coefficients before the raising and lowering

operators are chosen such that the free field Hamiltonian Ĥ0 for the collection modes

takes the usual form

Ĥ0 =
∑
ks,i

~ωs,i

(
â†ks,i

âks,i
+

1
2

)
. (3.10)

3.2.3 Interaction Hamiltonian

The SPDC process is enabled by a nonlinear optical material whose presence is described

by the Hamiltonian ĤI , written in the interaction picture [76] as

ĤI = −2ε0χ(2)

8

∞∫
−∞

dx dy

l/2∫
−l/2

dzE(+)
p Ê(−)

s Ê(−)
i + h.c.

= d

∞∫
−∞

dx dy

l/2∫
−l/2

dz

∑
ks,ki

~√ωiωs

nsni

αsαiE
0
p

L
e−i∆ωtgp(r)g∗s(r)g

∗
i (r)â

†
ks
â†ki


+ h.c. (3.11)

The crystal is assumed to be of infinite transverse (x, y) extent, which is justified when

the beam diameters are much smaller than the crystal dimensions. A frequency mis-

match ∆ω = ωp − ωs − ωi is introduced. The effective non-linearity d captures the

contraction of the nonlinear susceptibility tensor with the corresponding polarization

vectors (2d = epχ
(2) : esei) [76]. With this notation, the type of phase matching

condition (type I or II) is reflected in an appropriate effective non-linearity.

Most of the scaling aspects of the parametric downconversion process connected

with the geometry of the interaction Hamiltonian are determined by the overlap integral

Φ(∆k) of the three mode functions gp,s,i(r) in the crystal:

Φ(∆k) =
∫
dz

∫
dy dx gp(r)g∗s(r)g

∗
i (r)

=
∫
dz

∫
dy dx ei∆k·rUp(r)Us(r)Ui(r). (3.12)
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In this expression, ∆k = kp− ks− ki describes the wave vector mismatch. Since pump

and collection modes are defined in the y-z plane, there are no wave vector components

in the x-direction and hence ∆kx = 0. Carrying out the integration in the transverse

directions (x, y) we arrive at

Φ(∆k) =
π√
A · C

e−
∆k2

y
4C

∫
dz e−Hz2+izK , (3.13)

with the abbreviations

A =
1
W 2

p

+
1
W 2

s

+
1
W 2

i

(3.14)

C =
1
W 2

p

+
cos2 θs

W 2
s

+
cos2 θi

W 2
i

(3.15)

D =
sin 2θs

W 2
s

− sin 2θi

W 2
i

(3.16)

F =
sin2 θs

W 2
s

+
sin2 θi

W 2
i

(3.17)

H = F − D2

4C
(3.18)

K = ∆ky
D

2C
+ ∆kz (3.19)

The exponential term before the residual integral in equation (3.13) represents the

approximate transverse wave vector mismatch. This term can be ignored only if one

of the beams is infinitely large (Wp,s,i → ∞) or if there is perfect transverse phase

matching.

The residual integral along z in equation (3.13) can be re-written in a form that

allows also for a physical interpretation. I introduce Φz where

Φz :=

l/2∫
−l/2

dz e−Hz2+izK (3.20)

= l ·
1∫

0

du e−Ξ2u2
cos(∆ϕu) (3.21)

The phase mismatch is now defined as ∆ϕ = Kl/2. The argument Ξ :=
√
Hl/2 in the

exponential can be viewed as a “walk-off” paramter due to noncollinear mode propa-
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Figure 3.2: Longitudinal overlap Φz/l as a function of the total phase mismatch ∆ϕ = Kl/2
for various walk-off parameters Ξ. For Ξ = 0, the typical sinc -shaped spectral distribution is
revealed, whereas for large walk-off parameters Ξ > 1 the phase matching condition is determined
by the overlap region formed by pump- and collection modes, and Φz/l develops into a Gaussian-
like distribution. This figure is adapted from reference [66].

gation. This parameter is useful for identifying two different physical regimes which

will be called the thin crystal and the thick crystal regimes [106]. In our model, these

regimes refer to the physical boundary conditions imposed on the interaction volume

by the geometry of the pump and collection modes.

In the thick crystal regime with a large walk-off parameter (Ξ > 1), the overlap

integral Φz depends mostly on the characteristic beam parameters Wp,s,i and not much

on the physical limits of the non-linear material. For Ξ → ∞ the length of the crystal

ceases to play a role altogether:

Φz ≈ l

√
π

2Ξ
Erf(Ξ)

=
√
π

H
Erf(Ξ) (3.22)

The thin crystal regime refers to a small walk-off parameter, Ξ � 1, so that the

characteristic beam parameters have almost no influence on Φz. In particular, this

applies for collinear arrangement of all modes (θi = θs = 0), where Ξ = 0. In this case,

K = ∆kz, and

Φz = l sinc(∆ϕ) (3.23)

This reveals the well-known influence of the longitudinal phase mismatch on the down-

conversion spectral properties [78]. Figure 3.2 shows the overlap contribution Φz/l as
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a function of the phase mismatch ∆ϕ for various walk-off parameters Ξ. Note that as

Ξ becomes large, the spectrum becomes Gaussian-like. If Ξ is identified as the degree

of (non)collinearity, it suggests if all beam parameters are constants, collinear emission

will always have a narrower spectral profile than noncollinear emission.

3.2.4 Spectral emission rate

In order to obtain absolute emission rates, Fermi’s Golden Rule is used as an expression

for the transition rate R(ks) between the initial vacuum state |i〉 = |0ks , 0ki
〉 of the

collection modes, and a final state |f〉 = â†ks
â†ki
|0ks , 0ki

〉 populated in the mode pair

ks, ki. Fermi’s rule applies for asymptotic scattering rates, so the relation between ks

and ki is fixed by energy conservation:

∆ω = ωp − ks
c

ns
− ki

c

ni
= 0 (3.24)

The first step is to evaluate the transition rate R(ks) to a fixed collection mode index

ks. The density of states ρ per unit of energy ~∆ω is extracted out of a quasi-continuum

of states for the mode ki:

ρ(∆E) =
∆m
∆ki

∂ki

∂(~∆ω)
=

L

2π
ni

~c
(3.25)

where ∆m/∆ki = L/2π denotes the number of modes per unit of wave vector component

ki.

With the transition matrix element expressed in terms of the overlap integral Φ(∆k),

〈f |ĤI |i〉 = d
~√ωsωi

nsni

αsαi

L
E0

pΦ(∆k), (3.26)

the transition rate is then given by

R(ks) =
2π
~

∣∣∣〈f |ĤI |i〉
∣∣∣2 ρ(∆E) (3.27)

=
∣∣d αsαiE

0
pΦ(∆k)

∣∣2 ωsωi

n2
snicL

(3.28)

The spectral emission rate per unit of angular frequency ωs is obtained by multi-
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plying R(ks) by the number of modes of ks in a unit interval of ωs, which is Lns/2πc.

Hence,

dR(ωs)
dωs

=

[
dαsαiE

0
pΦ(∆k)
c

]2
ωsωi

2πnsni
(3.29)

At this point, the earlier introduced quantization length L has vanished as expected.

3.2.5 Total emission rate

The total pair generation rate may now be determined by integrating the spectral rate

density over all frequencies ωs. Assuming that the overlap term Φ(∆k) is only non-

vanishing over a small range of frequencies ωs, the total pair generation rate can be

written as

RT =

[
dαsαiE

0
p

c

]2
ωsωi

2πnsni

∫
dωs |Φ(∆k)|2 (3.30)

The dependency of Φ(∆k) on ωs can be quite involved, as in the noncollinear case

θi,s 6= 0 both ∆ky and ∆kz must be considered. However, the alignment criteria for

most experimental setups assume perfect longitudinal phase matching to arrive at the

collection angles for degenerate downconversion[61, 100]. In these collection directions,

the collection mode angles θs,i are equal. Furthermore, the typical experiment uses

identical collection modes (Ws = Wi) [100]. Under these two conditions, it is assumed

that the phase mismatch ∆ϕ is dependent only on ∆kz.

This leaves the exponential term in Φ that contains ∆ky (equation (3.13)). For

experiments which collect light centered on the degenerate wavelengths with a small

bandwidth (≈ 2 nm on either side of the center [100]), perfect transverse phase match-

ing is assumed. A treatment with non-zero transverse phase mismatch will require a

numerical procedure as in reference [110].

With perfect transverse phase matching, an expression for equation (3.30) is ob-

tained. This is done by re-parameterizing the frequencies of the signal and idler about

the degenerate SPDC frequency: ωs = ωp

2 − δω and ωi = ωp

2 + δω. The approximation

ωsωi ≈
ω2

p

4 is made by ignoring the δ2w term because RT rapidly falls to 0 when δw

increases. The longitudinal wave vector mismatch is made from energy conservation
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(equation (3.24)) and phase matching conditions:

∆kz = nsωs cos θs + niωi cos θi − npωp (3.31)

Hence, a dispersion relation between dωs and d(∆kz) is obtained.

d(∆kz) =
(ni cos θi − ns cos θs)

c
dωs (3.32)

The emission rate can now be integrated over the longitudinal wave vector mismatch,

∆kz. Effectively, this means that we are considering the pair emission rate for all allowed

wavelengths in the direction defined by our paraxial beams,

RT =
d2(αiαsE

0
p)2ω2

p

4cnsni(2π)(ni cos θi − ns cos θs)

∫
|Φ(∆k)|2d(∆kz). (3.33)

If we recall that the pump has a Gaussian envelope, and choose all beam characteristics

to be equal (Wp = Ws = Wi) [100], then RT finally can be written as

RT =
4d2Plω2

p

3πnpnsniε0c2(πW 2
p )(1 + cos θ2

i + cos θ2
s)(ni cos θi − ns cos θs)

ΦT , (3.34)

where ΦT :=
∫ ∣∣∣Φz(∆kz)

l

∣∣∣2 d(∆kzl/2). The absolute emission rate is proportional to ΦT

which has a dependence on the value of the walk-off parameter Ξ as shown in figure 3.3.

The largest value of ΦT is π, which is obtained in the thin crystal limit. In the thin

crystal limit closed form expressions for the spectral and total rates are

dR̃(ωs)
dωs

=
2d2ω2

pPl
2sinc2(∆kzl/2)

9πnpnsniε0c3(πW 2
p )

(3.35)

R̃T =
4d2Plω2

p

9nsninpε0πW 2
p (ni − ns)c2

. (3.36)
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Figure 3.3: Variation of ΦT with walkoff parameter Ξ. The absolute emission rate is proportional
to ΦT . The largest absolute rate is obtained in the thin-crystal limit when ΦT = π. This figure
is adapted from reference [66].

3.2.6 Dependence of emission rate on beam waists

Although it is convenient to set all beam waists to be equal, this is not necessary. In fact,

it can be shown that this choice does not maximize the total emission rate for a given

optical pump power. This is simplest to show in the thin-crystal limit. Carrying out

the more general derivation to arrive at an expression similar to (3.35), the dependency

on the various beam waists Wp,Ws and Wi can be written as

R̃T ∝ 1
W 2

pW
2
sW

2
i ( 1

W 2
p

+ 1
W 2

s
+ 1

W 2
i
)2
. (3.37)

To develop an alignment strategy, we may assume that the collection modes are identical

(Ws = Wi = W ), but we re-express the pump waist as Wp = γW . Thus, equation (3.37)

reduces to

R̃T ∝ 1
W 2( 1

γ + 2γ)2
, (3.38)

This relationship is illustrated in figure 3.4, and exhibits a maximum of R̃T for γ = 1√
2
.

For γ = 1, the emission rate is about 12% lower than the maximum value. This

suggests that experimental setups that are designed with equal beam waists for pump

and collection modes may be further optimized, and the simple argument of maximizing

a mode overlap [100] with matching beam waists does not hold.
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Figure 3.4: Dependence of the total pair rate R̃T on the ratio γ between target and pump waist.
The maximum emission rate can be expected at γ = 1/

√
2.

3.3 Physical interpretation and comparison to experiments

The absolute rateRT is proportional to crystal length l, while the spectral rate dR(ωs)/dωs

is proportional to the square of a sinc function. This is in agreement with results from

previous work [78]. However, our expression reveals dependencies on other factors,

namely pump wavelength, emission geometry and pump spot-size.

The absolute rate is proportional to the square of pump frequency since the sig-

nal and idler are re-parametrized about the degenerate frequency: so downconversion

efficiency can be improved with shorter wavelength pumps as long as they are trans-

parent in the crystal. The expression for RT reveals that the emission rate is higher in

a collinear geometry compared to a noncollinear case. This is because the noncollinear

case has a smaller interaction volume.

Both the spectral and total emission rates are inversely proportional to the mode

area of the beams, in contrast to previous papers which showed that the total SPDC

cannot be enhanced by focusing [78, 111] (these papers, however, were not considering

SPDC emission in single transverse modes). The dependence of emission rates on mode

area has also been reported in a previous analysis of SPDC in waveguide structures [95].

This should not be surprising because the emission into paraxial beams is essentially

the same problem as SPDC in waveguides, where the collection modes are quantized in

one dimension only. For example, equation (3.35) is similar to the equation obtained in

reference [95].
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We should not draw the conclusion, however, that SPDC emission into single trans-

verse modes can be arbitrarily enhanced by tight focusing. Our model is only valid in

cases where the transverse profile of the beams do not vary significantly over the crystal

length. For an optimization study of focus size on SPDC emission I refer the reader to

reference [109].

For explicit comparison of equation (3.34) with experimental values, consider the

experimental setup described in section 2.2. In this experiment a pump beam (beam

waist, Wp = 82µm) at a wavelength of 351.1 nm is incident on a 2 mm thick BBO

crystal. Two single mode fibers are used to collect degenerate downconverted photons,

which is estimated to have an external emission angle of 3.1◦. The collection modes also

have beam waists of Ws,i = 82µm.

For uniaxial, birefringent crystals like BBO, the effective non-linearity is given by

d = d22 cos2 θp cos 3φp. The angle between pump wave vector and crystal optical axis is

θp = 49.7◦, while the azimuthal angle is φp = 60◦, resulting in an effective nonlinearity

of 9× 10−13 m/V (d22 = 2.11× 10−12 m−1 V−1 according to [112]). The observed pair

rate is approximately 800 pairs mW−1s−1 with a pair-to-singles ratio of 0.23.

The walk-off parameter of this setup is Ξ = 0.933, indicating that the overlap integral

is intermediate between the thin and thick crystal limits. The maximum observable rate

according to our model, 2(0.23 × RT ) is 1100mW−1s−1. The additional factor of 2 is

used because in experiments, the geometry is used to collect downconversion emission

in two decay paths.

The source of the discrepancy between experiment and our model is hard to iden-

tify. The assumptions used in the model make it an overestimate, primarily in the

re-parametrizing of signal and idler frequencies about the degenerate. Experimentally,

there are several sources of uncertainty, the main one being the difficulty in establishing

pump power very accurately. For example, the average observed value was arrived by

measuring the power using two different power-meters (a Newport Model 818-UV re-

ported 11.7mW while a Coherent Fieldmaster reported 9mW). The error in pump power

estimation, however, is not sufficient to make the observed result compatible with the

calculated value.
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According to the model, the conversion efficiency into Gaussian transverse modes

for our experimental setting will be 3 × 10−12 mm−1 of crystal. Other experimentally

reported rates in the literature reveal similar downconversion efficiencies [100, 113, 107].

The total conversion efficiency of SPDC for a generic crystal was found by Klyshko to

be approximately 3× 10−8 mm−1 sr−1 [79] (for degenerate SPDC with a 500 nm pump

wavelength). When the collection angles used in our experiment (solid angle of 3.3 ×

10−5 sr) is taken into consideration, Klyhsko’s conversion efficiency is approximately

1× 10−12 mm−1.

3.4 Implications of the model

Although the expression for absolute rates given by the model is an idealized case for the

total pair emission rate, the predicted rates are only slightly larger than experimental

observations. The model derived in this chapter suggests that experimental setups using

single mode collection fibers (e.g. [107, 100]) operate close to the optimal limit.

Substantial increase of the emission rates are to be expected from larger non-

linearities, since emission rates are proportional to d2. Small mode diameters are also

expected to enhance emission rates, as has been convincingly reported for SPDC exper-

iments using waveguide structures [88, 89, 93], and a similar theoretical analysis [95].

Overall spectral brightness will be improved by combining larger non-linearities with

collinear mode confinement in longer structures. Even then, however, the spectral width

is still ultimately determined by the longitudinal wave vector mismatch. This indicates

that very dramatic improvements (by several orders of magnitude) to the generated pair

rate in a narrow bandwidth necessary for addressing atomic systems is not very likely

to be expected from bulk crystal emission.
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Chapter 4

Complete Polarization State

Characterization

The high quality of the polarization correlations from the implemented SPDC source

was determined by measuring the visibility of polarization correlations in section 2.3.

However, the exact polarization state of the photon pairs was not measured. This

chapter will describe a method to completely characterize the polarization state of the

photon pairs. We begin by looking at how to characterize polarization states of an

ensemble of single photons.

4.1 Polarimetry and qubit state tomography

It was stated in chapter 1 that the building blocks of quantum information were known as

qubits, which could be realized through the polarization state of single photons. Qubits

are essentially two level (spin-1
2) quantum systems that can exist in a state described by

the superposition of those two levels. Qubits are easily realised with polarization states

of photons because the polarization degree of freedom is described by a two dimensional

Hilbert space. For this particular physical implementation, qubit state estimation is the

same as polarization state estimation. Qubit state estimation is sometimes called qubit

state tomography 1. For polarization based qubits, this makes qubit state tomography

1The simplest method of state estimation is by using a series of projective measurements because
a state cannot be estimated from a single projection. Instead, several different projections are needed,
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the same problem as classical polarimetry.

In some ways, the use of polarization based qubits has made the problem of qubit

state estimation simpler, because one can rely on a huge body of work studying classical

polarization state estimation. In fact, it is useful to point out that polarized classical

light can be described as an ensemble of qubits, all sharing an identical state. In this

chapter, we will see how to employ polarimetric techniques that are relevant to quantum

information.

In the context of quantum information applications it is compelling to implement

qubit state estimation techniques that are fast and consume as few copies of the state as

possible. Research in improving the efficiency of quantum state estimation techniques is

an area of active theoretical study [114, 115, 116, 117, 118, 119, 120] with much focus on

qubits. Experimental reports on state estimation are fewer [121], partly because many

schemes call for a joint measurement on an ensemble of qubits which is not always

possible to implement.

Polarimetry that uses the least number of measurement outcomes is said to be min-

imal. Minimal polarimetry techniques in classical optics have been known for a long

time and a lot of work in their optimization has been done [122, 123, 124, 125, 126].

While these classical methods perform well in estimating the polarization state for sin-

gle photon ensembles in the limit of large numbers, their performance in the regime of

extremely low light intensity (single photon level) was uncertain and it was not obvious

how to use them in estimating non-classical states of light. For this reason, progress in

polarimetry at the single photon limit are of interest in many areas, including charac-

terization of faint sources of light, classical ellipsometry [122], and advanced quantum

key distribution protocols [127, 128, 129].

From the different minimal estimation techniques it is desirable to implement the

ones that are also optimal [116, 120]: optimal methods have the best asymptotic effi-

ciency in determining an unknown state when averaged over all possible input states.

This gives an operational definition of minimal and optimal state estimation for ensem-

bles of prepared quantum systems. It is the technique that provides the best improve-

each providing a different section of information on the state. Such a method of state estimation from
different sections is called tomography.
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ment to our estimated state for each additonal copy taken from the ensemble. In 2005,

R̆ehác̆ek et al. proposed such a method for state estimation of polarization based single

qubits [120].

In this chapter I address the experimental problem of implementing the optimal

state estimation method described in [120] by using a complete four output polarimeter

with no moving parts. The technique is described in section 4.2 by reviewing the theory

of optimal polarization state estimation. In section 4.3 polarization state estimation of

multi-photon states is addressed. Section 4.4 is devoted to the experimental alignment

procedure to make the polarimeter perform optimally. Experimental state reconstruc-

tion on ensembles of single photon and two-photon states will be illustrated in sections

4.5 and 4.6.

4.2 State estimation using the optimal polarimeter

The polarisation state of light can be completely characterized by a reduced Stokes

vector that is denoted by ~Sr = (S1, S2, S3) (Appendix A). The reduced Stokes vector

identifies a point in the Poincare sphere.

A minimal scheme of estimating the Stokes vector requires exactly four detector

readings, which corresponds to finding the overlap of the unknown Stokes vector with

four non-coplanar vectors that define a tetrahedron in the Poincare sphere (figure 4.1).

These four non-coplanar vectors define four measurement operators Bj that govern the

detector readings and form a set of complete Positive Operator Value Measurements

(POVM) [130]. Such POVMs that use a small number of measurement operators are

called finite POVMs. The tetrahedron geometry defines the largest volume that can be

enclosed by a vector quartet in the Poincare sphere, making it the optimal estimation

technique when using four POVMs [124, 131]. Such a state estimation technique is

also unbiased in the asymptotic limit because the total distance of any vector in the

Poincare sphere to all four POVM vectors depends only on the vector’s magnitude. In

other words, the orientation of the unknown vector does not affect the final accuracy

with which it is estimated [120]. However, the rate at which the accuracy improves does

depend on the relative orientation of the unknown vector (see sections 5.3 and 5.4).
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b4 2b

b1

b3

Figure 4.1: Stokes vectors for minimal and optimal polarimetry. Four reduced Stokes vectors
in the Poincare sphere that form a tetrahedron define the optimal POVM operators used for
polarization state estimation. The tetrahedron gives the largest volume encompassable by a
vector quartet in the sphere making it the optimal measurement when using four POVMs. This
figure is adapted from figure [65].

I shall denote the tetrahedron’s reduced Stokes vectors by ~b1,~b2,~b3,~b4 as shown in

figure 4.1. Each measurement operator Bj may be expressed as

Bj =
1
4
(~bj · ~σ), (4.1)

where ~σ = (σ0, σ1, σ2, σ3), σ0 being the unit matrix and σ1,2,3 the Pauli matrices.

In an experiment each operator Bj is associated with a detector bj . The average

intensity falling on detector bj is denoted as Ij . Thus expectation values of the tetra-

hedron operators are related to detected intensities as follows:

Ij
It

= 〈Bj〉 =
1
4
(~bj · ~S) with It =

4∑
j=1

Ij (4.2)

Writing the intensities as a vector ~I = (I1, I2, I3, I4)/It gives the Stokes vector

~I = Π · ~S ⇔ ~S = Π−1 · ~I, (4.3)

where Π is referred to as the instrument matrix. Each row of this matrix is composed
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Figure 4.2: Practical implementation of the tetrahedron polarimeter that achieves the ideal
instrument matrix. Each detector bj is associated to the tetrahedron vector ~bj . The partially
polarizing beam splitter (PPBS) separates incoming light according to polarization, and quartz
plates remove unwanted phase shifts. Light leaving the PPBS is passed through waveplates
and polarizing beam splitters (PBS) to be projected on two different bases (±45◦ basis for
transmitted light and the circular basis for reflected light). This figure is adapted from figure
[65].

from a vector ~bj . One possible instrument matrix of the ideal polarimeter is:

Π =
1
4



1
√

1
3

√
2
3 0

1
√

1
3 −

√
2
3 0

1 −
√

1
3 0 −

√
2
3

1 −
√

1
3 0

√
2
3


(4.4)

Experimental realisation of this instrument matrix is achieved by the polarimeter

shown in figure 4.2. The first component of the polarimeter is a partially polarizing

beam splitter (PPBS) that has a particular amplitude splitting ratio for incoming light,

most easily determined using Jones vector notation for polarization. The amplitude

division coefficients of the PPBS x and y obey energy conservation |x2| + |y2| = 1.

The PPBS takes horizontally polarized light
(
1
0

)
, to the polarizations

(
x
0

)
and

(
y
0

)
in the

transmitted and reflected arm, respectively, and vertically polarized light
(
0
1

)
, to

(
0
y

)
in

transmission and
(
0
x

)
in reflection.

Light in the transmitted arm of the PPBS is projected on the ±45◦ polarization

basis and light in the reflected arm onto the circular polarization basis, the tetrahedral
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arrangement of the vectors ~bj are ensured with the following relations:

x2 =
1
2

+
1

2
√

3
and y2 =

1
2
− 1

2
√

3
. (4.5)

Detailed steps are given in Appendix B.

Partially polarized light can be described using a density matrix (or coherency ma-

trix). By writing the entries of the density matrix as a column vector ~ρ, they can

determined from the Stokes vector [132] using the following transformation:

~ρ =
1
2
Γ1 · ~S

=
1
2



1 1 0 0

0 0 1 i

0 0 1 −i

1 −1 0 0


· ~S (4.6)

The columns of the matrix Γ1 are the Pauli operators written as column vectors

Γ1 = (~σ0, ~σ1, ~σ2, ~σ3). The matrices Π−1 and Γ1 can be combined into a single matrix

T :=
1
2
Γ1Π−1 ⇒ ~ρ = T · ~I (4.7)

which might be referred to as a tomography matrix as it directly relates the detected

intensities to the density matrix of the state.

4.3 State tomography for ensembles of multi-photons

The instrument matrix scheme above can be extended to perform polarization state

tomography on ensembles of multi-photon states. James et al. [121] have described

a similar state estimation method. I follow their approach but use the optimal and

instrumentally motivated measurement operators, thereby reducing any ambiguity over

the choice of operators.

The simplest multi-photon system is a photon pair detected by testing for coinci-

dence in the detection time of their component photons. In our measurement process
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each member of the photon pair is passed through a polarimeter. Given two polarime-

ters 1 and 2, each with four detectors bi1 and bi2 , respectively, (i1, i2 = 0, 1, 2, 3), there

will be 16 possible coincidence combinations between the detectors (figure 4.3). Each

coincidence rate is governed by an operator composed from the individual detectors’

measurement operators. If the measurement operator for detectors bi1 and bi2 are de-

noted as Bi1 and Bi2 , and the coincidence count between them as ci1,i2 , the coincidence

rates can be expressed as a linear function of a two-photon polarization state vector S2:

ci1,i2

ct
= 〈Bi1 ⊗Bi2〉 = (

1
4
~bi1 ⊗

1
4
~bi2) · ~S2, (4.8)

with ct =
4∑

i1,i2=1

ci1,i2

Here, ~S2 is the Stokes vector equivalent for a two-photon system [121] and ct is the total

number of observed coincidences. This gives the set of measurement operators governing

the coincidence pattern. The sixteen coincidences ci1,i2 can be written in column vector

format ~C2 =(c1,1, c1,2, ..., c4,4). If the two-polarimeter instrument matrix is defined as

Π2, the instrument response is analogous to equation (4.3):

~C2 = Π2 · ~S2 ⇔ ~S2 = Π−1
2 · ~C2 (4.9)

Thus the density matrix of the two-photon state by constructing the analogous two-

photon expression for equation (4.6) is:

~ρ2 =
1
22

Γ2 · ~S2 = T2 · ~C2 (4.10)

Each column of Γ2 is the product of two Pauli operators σi1 ⊗ σi2 (i1, i2 = 0, 1, 2, 3)

written in column vector format and T2 is the tomography matrix for the two-photon

state.

It is now straightforward to generalize this concept to obtain the density matrix for

states of N correlated photons. Using N polarimeters, we obtain the pattern of N -fold

coincidences to build up the coincidence vector ~CN which is used to find the N -photon
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Figure 4.3: Scheme for estimating the polarization state of an ensemble of N photons using N
polarimeters (P1,P2,...,PN). A multiple coincidence circuit identifies the 4N possible coincidence
combinations. For photon pairs (N=2), two polarimeters are used giving 16 possible coincidence
combinations. Several copies of the state are processed giving a coincidence pattern used in
estimating the polarization state of the ensemble. This figure is adapted from figure [65].

Stokes vector and density matrix:

~SN = Π−1
N · ~CN , (4.11)

~ρN =
1

2N
ΓN · ~SN = TN · ~CN (4.12)

Each row of the instrument matrix ΠN is given by (1
4
~bi1 ⊗ 1

4
~bi2 ... ⊗ 1

4
~biN ) and each

column of ΓN is the product of N Pauli matrices σi1 ⊗ σi2 ...⊗ σin (in = 0, 1, 2, 3 and

n = 1, 2, ..., N). This generalized approach will work for all four-detector polarimeters

in multi-photon analysis schemes (figure 4.3).

4.4 Phase correction and polarimeter calibration

4.4.1 Removing unwanted phase shifts

In the presented polarimeter, an ideal PPBS has the nominal beam splitting ratio (equa-

tion (4.5)) and also rotates the polarization state of light leaving the beamsplitter into

the correct polarization basis [125]. Such beamsplitters, however, are not easily avail-

able and their design is the focus of active research [133]. The implementation here uses
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Figure 4.4: Instrument response of the polarimeter to linearly polarized light. The data points
show the variation in relative intensity at each detector with respect to the angle of the half
wave plate (HWP) in the polarisation state preparation. The solid lines show the expected
intensity modulation for an ideal device for each HWP setting (equation (4.13)), scaled for
appropriate detector efficiencies. Error bars are smaller than the point markers. Panel (a)
shows the relative intensity at detector 2 without compensation plates. Panels (b) and (c) are
taken with compensation for phase shifts. The oscillation in (a) is out of phase and also of
lower amplitude compared to the phase corrected behaviour of detector 2 in panel (b). Plots
in (c) shows a lower amplitude because light in the reflected arm is not projected on a linear
polarization basis. This figure is adapted from figure [65].
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beamsplitters with only the nominal intensity splitting ratio.

A PPBS without phase shift diverts light in state −~bj (that is conjugate to a tetra-

hedron vector ~bj) from detector bj . General beamsplitters, however, lack this phase

preserving property. The result is that input of conjugate states −~bj does not stop light

from reaching the associated detectors. This suggests an easy alignment method for

correcting any unwanted phase shifts with birefringent compensation plates.

For phase correction high quality horizontally polarized light was prepared using

polarizers of extinction ratio 105. With one subsequent half wave plate (HWP) and one

quarter wave plate (QWP) it is possible to prepare any polarization state on the surface

of the Poincare sphere. Compensator plates (0.5 mm thick quartz crystals) mounted on

rotating stages were placed at each output arm of the PPBS, and light with a conjugate

polarization state was sent to the polarimeter. For each polarization state −~bj the

compensator in the relevant output arm was rotated until the detector bj received no

light. Two input states (one for each output arm) were sufficient to compensate for the

unwanted phase shifts.

The compensated polarimeter behavior was verified using linearly polarized light

prepared using only the polarizer and HWP (this reduces preparation errors due to

residual errors in the QWP). The prepared states have a Stokes vector of the form

(1,cos 4ψ,sin 4ψ,0), where ψ is the angle of the HWP, so the normalized response of

detector 1, for example, will be

I1 = 1 +

√
1
3

cos 4ψ +

√
2
3

sin 4ψ. (4.13)

The number of photons accumulated at each single photon detector was noted for each

angle of the HWP. The results are shown in figure 4.4.

The results show that the response of the compensated polarimeter is very close to

ideal. The extrema of the measured intensities are less than 1◦ (of HWP angle) away

from their nominal positions. This means that the actual measurement vectors are

pointing in the same direction as the ideal tetrahedron vectors, although their magni-

tudes will be different due to imbalanced detection efficiencies. While this renders the

asymptotic efficiency of the polarimeter less than ideal, it still represents the optimal
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setup for achievable collection efficiencies. In other words, the volume defined by the

experimental POVM vectors [131] is maximized.

This measurement result is limited by the accuracy of the rotation controllers. The

waveplates are mounted on rotary motors with an accuracy of 0.3◦. The polarizing

beam splitters in the output arms have an extinction ratio of 104 and the waveplates’

optical path length differ from their nominal values by less than 2%.

4.4.2 Calibrating the polarimeter

The instrument matrix of this polarimeter is calibrated to account for all residual phase

shifts and coupling inefficiences. A general calibration technique for four detector po-

larimeters (“equator-poles method”) was described by Azzam et al. [134]. Incidentally,

the phase dependency measurement shown in figure 4.4 was an essential part of this

calibration.

Using this technique it is possible to find the correction terms needed to be made to

our ideal instrument matrix. A typical corrected instrument matrix Πc is shown below:

Πc =
1
4



0.962 1.051
√

1
3 0.920

√
2
3 0.005

0.991 1.031
√

1
3 −0.956

√
2
3 −0.005

1.010 −1.045
√

1
3 0.005 −0.945

√
2
3

1.032 −1.009
√

1
3 0.029 1.011

√
2
3


.

The uncertainty for each of the correction terms above is on the order of 0.002. The

deviation from entries in the ideal instrument matrix (equation (4.4)) is on the order of

a few percent.

The phase correction and calibration steps presented above must take into account

the wavelength of the input light because optical elements are specified to perform only

within a certain bandwidth. The polarimeter was built to study the polarization state

of light coming from the SPDC source described in chapter 2. The same light source was

used for phase correction and polarimeter calibration and the experiments described in

the remaining sections.
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Figure 4.5: Fidelity of reconstructed states to the prepared states. A set of polarization states
(~Si) equally distributed over the Poincare sphere surface was generated; photons from each of
these states were sent to the polarimeter, from which an estimated state ( ~Se) is obtained. The
fidelity is given by 1

2 ( ~Se · ~Si). It is roughly constant over the Poincare sphere, showing that the
polarimeter is an unbiased polarization state estimator. This figure is adapted from figure [65].

4.5 Experimental state tomography for single photon en-

sembles

The ability of the tetrahedron polarimeter to estimate polarization states without bias

was tested by preparing a set of pure polarization states equally distributed over the

Poincare sphere. In this way regions that suffer poor state estimation (if any) can be

identified.

Computer controlled motors were used to rotate waveplates (after a H-filter) in

preparing the set of polarization states. The Stokes vector of a pure polarization state

can be expressed as ~S = (1, cos 2δ cos 2[ψ+ δ],− cos 2[ψ+ δ] sin 2δ,− sin 2[ψ+ δ]), where

δ and ψ are the QWP and HWP angles, respectively. Thus any set of coordinates (char-

acterized by the polar and azimuthal angles) on the Poincare sphere can be expressed

in terms of the waveplate angles.

For each set of angles, the detectors accumulated photon detection events for one

second giving a particular vector ~I from which an estimated Stokes vector ~Se and prob-

ability density matrix ρe can be obtained via equations (4.3) and (4.6). To calculate the

distance of the estimated state from the (ideal) prepared state ρi (~Si), the Uhlmann fi-

delity is used. It is defined as (tr[
√√

ρiρe
√
ρi])2 [135, 136]. For pure states this quantity
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reduces to the overlap of their Stokes vectors 1
2(~Si · ~Se).

The fidelity was mapped to the appropriate polar and azimuthal coordinates on the

Poincare sphere (figure 4.5); linear polarization states correspond to a polar angle of 0◦.

The average fidelity for the whole map is 99.8% with a minimum fidelity of 98.4±0.9%

(the cumulative photon count per point is approximately 2000). There are no systematic

areas of low fidelity even when wedge errors in the state preparation waveplates cause

count rates to drop. This indicates that the polarimeter estimates all pure polarization

states equally well.

Fidelity does not distinguish between errors introduced in state preparation from

errors in the state estimation process. Therefore the state preparation apparatus was

characterized independently and their contribution to the error in calculated fidelity

was determined to be on the order of ±0.01%. Thus the residual difference in fidelity is

assigned to imperfections in the detection apparatus.

4.6 Experimental state tomography for a two photon en-

semble

This section illustrates the use of two polarimeters to perform polarization state tomog-

raphy on a two-photon state generated from an SPDC source. First, two polarimeters

were correctly aligned and after calibration their instrument matrices were found to be:

1
4



0.903 0.927
√

1
3 0.9997

√
2
3 −0.041

1.124 1.135
√

1
3 −1.014

√
2
3 0.0602

0.995 −1.079
√

1
3 0.001 0.913

√
2
3

0.978 −0.983
√

1
3 0.003 −0.936

√
2
3


and

1
4



1.074 1.171
√

1
3 0.913

√
2
3 −0.082

0.983 0.8804
√

1
3 −1.044

√
2
3 0.004

1.082 −1.172
√

1
3 0.001 −0.9625

√
2
3

0.862 −0.88
√

1
3 −0.002 0.867

√
2
3


.
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The SPDC source was arranged to generate photon pairs that are detected as a

maximally entangled Bell state |Ψ+〉. Bell states created via SPDC are typically char-

acterized by a polarization correlation experiment, from which a visibility value can

be obtained (section 2.3). For this particular measurement environment, the visibility

measured in the HV and ±45◦ basis was 97.7± 2%.

The photon pairs were passed through the polarimeters and the pattern of coinci-

dences between them was observed. The 16 observed coincidence rates (collected using

the scheme similar to [137]) make up the coincidence vector ~C =(21444, 1505, 24104,

26002, 979, 24716, 23210, 22447, 21661, 30752, 24061, 268, 19010, 23692, 339, 17695).

Using this vector with equations (4.9) and (4.10) we obtain the density matrix whose

real components are

Re[ρ] =



−0.002 −0.01 −0.03 −0.024

−0.01 0.506 0.485 0.025

−0.03 0.485 0.498 0.009

−0.024 −0.024 0.009 −0.003


,

while the magnitude of the imaginary components are below a value of 0.04 (figure 4.6).

The uncertainty in each of the above terms is on the order of 0.011. The Uhlmann

fidelity of this state to the ideal |Ψ+〉 state was found to be 0.990 ± 0.014. Error bars

in all cases were computed by numerical derivation and propagated Poissonian counting

noise. The propagated error bars result in an estimated density matrix compatible with

the ideal |Ψ+〉〈Ψ+| state.

4.7 Remarks on the minimal polarimeter

This chapter described the implementation and use of a minimal and optimal polarime-

ter, that can also completely describe the polarization of multi-photon states. In par-

ticular, the construction, calibration and use of the polarimeter in reconstructing single

photon and two-photon staes was demonstrated.

The response of the compensated polarimeter was measured over a dense sampling

of states on the Poincare sphere, and found to be similar to that of an ideal device.
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Figure 4.6: The density matrix of a Bell state |Ψ+〉〈Ψ+| obtained by linear reconstruction from
photon pairs. This figure is adapted from figure [65].

This shows that minor defects in the optical elements (e.g. inexact amplitude splitting

in the beam splitters) can be corrected or tolerated, making optimal polarimeters more

accessible.

I also described an instrumentally motivated method for constructing the measure-

ment operators governing light distribution to each output of the polarimeter. This in-

strument based approach also allows a convenient generalization to obtain measurement

operators governing multi-photon coincidences. These operators can then be applied to

the linear reconstruction of multi-photon Stokes vectors and their density matrices. Op-

timal polarimeters were then used for estimating the polarization state of experimentally

prepared ensembles of single photons and photon pairs in a Bell state. The estimated

states were evaluated by computing their fidelity to the (ideal) prepared states. It is

found that the average fidelity in all experiments is above 99.8%.

Hence, the method I have presented works for both classical and quantum states of

light. In the next chapter, we study state estimation for selected single photon and two-

photon states in order to arrive at a scaling law governing the incremental improvement

to the estimated state for each additional copy taken from the ensemble.
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Chapter 5

Asymptotic Efficiency of Minimal

& Optimal Polarimeters

5.1 Efficiency of state reconstruction

The last chapter described an implementation of minimal and optimal polarimetry,

where detection of an asymptotically large (i.e. essentially infinite) number of copies

of a polarization state gives an estimated vector that is very close to the true Stokes

vector. Such a reconstructed state is known as the asymptotic estimate.

In many experimental scenarios, however, the experimentalist only has access to a

finite sized ensemble. In these cases it is useful to have a model describing the average

accuracy of a reconstruction based on the ensemble size. This chapter develops a model

that provides an uncertainty budget for the tetrahedron POVM.

Finite POVMs (like the tetrahedron) do not reconstruct all states with the same

efficiency, i.e. the incremental improvement to the estimated state with each additional

detected copy is not uniform for all states. However, the difference between the best and

worst cases is usually within counting errors making them indistinguishable. To establish

a lower bound for the efficiency of state estimation, it is sufficient to study states that

are reconstructed with the lowest rate of incremental improvement. In the context of

the tetrahedron POVM, polarization states aligned with the tetraheron vectors provide

the worst reconstruction cases. For example, from equation (4.4) one such state has
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the Stokes vector ~b1 = (
√

1
3 ,
√

2
3 , 0). Polarization states that are anti-aligned with the

tetrahedron are estimated with slightly better efficiency because they have a restricted

photon distribution pattern [120].

5.2 Average accuracy

In the last chapter the Uhlmann fidelity was used as a gauge of the state estimation

accuracy. This chapter uses a different measure of accuracy called the trace distance

D [138]. In particular, the average trace distance D̄ of an estimated state from the

asymptotic estimate is desired.

Trace distance is used because it has a simple interpretation for single photon states

in the Poincaré sphere. It is the geometric distance between the two points representing

two states. In general trace distance is defined as D = 1
2 tr|ρa − ρe|, where ρa is the

density matrix of the asymptote state, ρe is the density matrix of the estimated state,

and |X| =
√
X†X. The value of D is between 0 and 1 such that D = 0 when ρa = ρe.

To determine D̄ all the possible ways to distribute N photons between four de-

tectors is considered. Suppose there are k distribution patterns. For each distribu-

tion pattern k = (n1, n2, n3, n4), the total number of compatible sequences is ck where

ck = N !/(n1!n2!n3!n4!). By linear reconstruction each sequence provides a Stokes vector

~Sk (and trace distance value, Dk). The probability of each sequence occurring is given

by pk = pn1
k1 · p

n2
k2 · p

n3
k3 · p

n4
k4 , where pkj is the probability that an input photon will arrive

at detector j. The value of pkj varies according to the choice of the tetrahedron vectors

as well as the input state. The average of the trace distance is

D̄ =
∑

k

ck · pk ·Dk,

and D̄ is identified with the accuracy of our estimated state given N photons.
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Figure 5.1: Estimated states plotted on the surface of the Poincaré sphere. The horizontal line
represents linearly polarized states. Light crosses mark the prepared polarization state, and a
darker cross marks the estimated state. The likelihood region is marked in white. This series of
plots can be viewed as a demonstration of how accuracy and uncertainty in state reconstruction
changes with increasing number of detected photons.
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5.3 Accuracy in estimating single photon states

5.3.1 Direct observation on a maximally polarized single photon state

This subsection presents a direct observation of estimated states (obtained by linear

reconstruction) converging to the asymptotic estimate. At the same time, a likelihood

estimation is performed to find a region of states that are highly compatible with the

observed pattern of photon distribution. The size of this region of this region can be

interpreted qualitatively as the uncertainty in the estimate.

By operating the SPDC source as a heralded single photon source [103], it is possible

to select a very well defined ensemble of photons virtually unaffected by accidental counts

and background noise. An ensemble of 200 heralded photons prepared in the state ~b1 =

(
√

1
3 ,
√

2
3 , 0) were detected. For each photon, the accumulated linear reconstruction is

used to obtain a maximally polarized state. At the same time the likelihood region is

determined. The estimated state and the likelihood region is plotted on a projection of

the Poincaré sphere surface. Figure 5.1 shows a selected number of steps from the data.

It is clear that for low photon numbers, the estimated state can fluctuate wildly.

However, as the accumulated number of photons increase the estimated state converges

to prepared state, while the likelihood region is reduced in size showing that the uncer-

tainty in the estimated state reduces quite rapidly.

5.3.2 Accuracy as a function of the detected number of photons

The results in the last subsection are a qualitative study of the convergence of estimated

states to the asymptotic estimate. This convergence will now be studied quantitatively

for the following polarization states: the tetrahedron state ~b1, its conjugate state −~b1,

and the completely unpolarized state whose reduced Stokes vector is (0, 0, 0). The

completely unpolarized state is obtained by collecting unprepared light from one arm

of the SPDC source, and is a test for the model when dealing with mixed states. The

two maximally polarized states represent the worst and best cases, respectively, in the

linear reconstruction of pure states.

For each test state, a very large number of heralded photons (several hundred thou-

sand) was first measured in order to obtain an asymptotic estimate. Then 150 photons
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Figure 5.2: Average trace distances for three different test states, obtained by experiment
(points) and by a statistical model (solid lines). The measurements were taken by averaging
over 40 experimental runs, each run accumulating 150 detection events. For clarity, only a subset
of the experimental data for each state are plotted.



5.3. ACCURACY IN ESTIMATING SINGLE PHOTON STATES 66

unpolarized
stateb1

 1

 0.1
 1  10  100

Photons Counted

A
ve

ra
ge

d 
T

ra
ce

 D
is

ta
nc

e

Figure 5.3: Average trace distance for two test states using only the results of the analytical
model. The data points are a subset of the analytical results while the solid lines are fits to the
results.

were detected and for each additional photon an estimated state was obtained by linear

reconstruction, as well as the corresponding trace distance. These finite sized measure-

ment sets were repeated 40 times, from which the average trace distance was obtained.

Selected steps in the measured data for the different test states are shown in figure

5.2. The statistically predicted average trace distance is shown by the solid line. The

accuracy of the tetrahedron POVM is consistent with the statistical model for both

polarized and unpolarized light and the maximum increase in accuracy occurs within

the first 100 photons that are detected. Such a graph can be useful for predicting the

accuracy of state estimation from a finite ensemble of photons.

5.3.3 An expression for accuracy

The results from the statistical model may be analyzed further by plotting the analytical

results on a logarithmic scale as in figure 5.3. One possible expression between trace

distance and sample size, N, is the following,

D̄ =
a

N c
(5.1)

The values of parameters a and cmay be found by a least-squares fit to the analytical

results, and their values for some test states are presented in table 5.1.

The c parameter indicates the rate at which information is obtained about a par-
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ticular state. Indeed, from table 5.1 it is seen that c is compatible with a value of 0.5,

which means that the accuracy scales as 1√
N

. This scaling law is also called the standard

quantum limit. The value of the a parameter, however, seems to indicate the difficulty

in estimating a particular state. Hence, the pure polarization states all have lower a

values compared to the completely unpolarized state.

5.4 Accuracy in estimating two photon states

As a comparison to the single photon state, the D̄ value of reconstructed two-photon

states was also measured. Following the single photon experiments, several hundred

thousand copies of the two-photon state (prepared in section 4.6) were first detected

to obtain the asymptotic estimate. Five sets, each containing five thousand detected

pairs, were then analyzed. Within each set, a two-photon state was obtained by linear

reconstruction for each incremental detected pair, and the corresponding trace distance

to the asymptotic estimate was determined. In this way, an average of the trace distance

was obtained. The result was compared with the one-photon tests.

However, instead of comparing D̄ directly, let us compare the normalized trace

distances, D̄n defined as D̄n = D̄/(4n−1), where (4n−1) is the number of free parameters

in the system. A one-photon system has 3 free parameters while a two-photon system

has 15. The normalized results are compared in figure 5.4. It is seen that for both

single and two-photon systems, the normalized average trace distance is within 0.01%

after 5000 detection events. This suggests that the POVM reconstructs both single and

multi-photon states with the same normalized accuracy.

Table 5.1: Fit parameters for the test states

test state a c

unpolarized 1.4166 0.505525

horizontal, H 1.3122 0.505007

~b1 1.3229 0.504702

−~b1 1.2884 0.506201
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Figure 5.4: The averaged trace distances (over 5 experimental runs) for a two-photon Bell state,
|Ψ+〉 and single photon maximally horizontal polarized state, after normalizing over the number
of free parameters (3 for a one-photon state, and 15 for the two-photon state).

5.5 Scaling law for multi-photon polarimetry

This chapter has presented a simple statistical model for the average accuracy (i.e. D̄)

of the tetrahedron POVM in reconstructing quantum systems at a given ensemble size.

Furthermore, experimental results were provided for ensemble sizes in an intermediate

regime that is rarely studied theoretically. It was found that the predictions of the

statistical model were consistent with experimental observation.

The efficiency of state estimation was found to scale as 1√
N

, whereN is the number of

detected copies of the system. A similar trend was observed from a numerical simulation

presented in [120]. It was seen that the difference in reconstruction efficiency between

states is small - hence the tetrahedron POVM is effectively optimal for all states. From

experimental observations, the accuracy in estimating a two-photon state appears to

follow the same scaling law as for single photon states when normalized to the number

of parameters to be estimated. It is speculated that the same scaling law would hold

for all multi-photon systems. If this scaling law is found to hold for higher dimensional

systems, it provides a simple way of determining the “cost” of estimating an unknown

state, to any desired accuracy.
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Chapter 6

Spectral Characterization of

Entangled Photon Pairs

In chapter 2, the spectral bandwidth of the photons in each arm of the experimental

source was measured and found to be approximately 4.5 nm. In this chapter, measure-

ments are made to determine the actual spectral correlations between the photon pairs

that are produced. It will be seen that the entanglement quality is closely connected

with the spectral distinguishability of the photon pairs.

6.1 Spectral correlations of photon pairs

The SPDC process is able to generate polarization-entangled photon pairs because two

different decay paths are indistinguishable apart from their polarization degree of free-

dom. In the source that was implemented (section 2.2), the two decay paths lead to

a pair of photons that are polarized either as H1V2 or V1H2 (in the HV polarization

basis). One implication of this requirement is that the spectral characteristics of the

H1V2 pair must be identical to those of the V1H2 pair.

The spectral relationship that exists between photons in a pair comes from energy

conservation: ωp = ω1+ω2. When SPDC takes place with a monochromatic pump beam,

there is a strict correlation between the frequencies of the downconverted photons. When

the pump is no longer monochromatic the frequencies of downconverted photons are not

exactly anti-correlated because of the broad range of available pump frequencies. In such
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multi−mode fiber

single mode fiber motor mounted grating

Figure 6.1: Schematic of a simple grating based spectrometer. A 1200 line per mm grating is
mounted on a motorized rotation stage with a high angular resolution. The first order reflection
is collected into a multi-mode fiber that goes to a single photon counter.

cases the polarization-entanglement quality is degraded and information on the SPDC

decay paths can be treated as having leaked into the spectral degree of freedom. This

effect was analyzed by Grice and Walmsley in reference [139], and has been observed

experimentally [140, 141] with pulsed lasers that have a broad spectrum.

Such spectral correlations are not commonly studied with continuous-wave (cw)

pumps because it is assumed that cw light may be approximated by monochromatic

waves. This chapter presents results to show that polarization-entanglement quality is

degraded even with a cw pump, as long as the pump light is not monochromatic.

Spectral properties of photon pairs can be investigated with tools like interferom-

eters [142] or spectrometers. The tool of choice here was a very simple grating based

monochromator. It is based on an interference grating that is mounted on a fine-

resolution motorized rotation stage (OWIS DMT 40). The schematic for this device is

shown in figure 6.1.

Input light is fed into the device from a single-mode fiber. This light is collimated

and sent onto the grating. The first order interference fringe reflected off the grating is

collected into a multi-mode fiber that is sent to single photon counting detectors. The

device is calibrated using 632.8nm light from a standard He-Ne gas laser, by ensuring

that the zeroth-order fringe at this wavelength is back reflected into the single mode

fiber. Rotating the grating allows different wavelengths to couple into the multi-mode

fiber. The resolution of the device was found to be 0.25nm.

To investigate the spectra of single photon ensembles only one monochromator is

needed. However, two such devices were built as this allows one monochromator to be

placed in each arm of the photon pair source, so that two different spectral regions could



6.2. MEASURED SPECTRA 71

H polarized
V polarized

 100

 200

 300

 400

 694  698  702  706  710

P
ho

to
n 

C
ou

nt
s 

(p
er

 3
00

m
s)

Arm 1

Wavelength (nm)

 100

 200

 300

 400

 500

 694  698  702  706  710

H polarized
V polarized

P
ho

to
n 

C
ou

nt
s 

(p
er

 3
00

m
s)

Wavelength (nm)

Arm 2

Figure 6.2: Spectra of H and V polarized light in the two different arms of the experimental
source descibed in section 2.3. The spectra of the polarized light is practically indistinguishable,
ensuring high quality polarization-correlations. The average FWHM of the spectra are 4.5 nm.
There is a residual background count of approximately 300 s−1.

be investigated for correlations.

A problem of this spectrometric method is that the device is lossy (not all the input

light is sent into the collected first order fringe). It is also able to measure the spectrum

only as fast as the motors are able to rotate. However, the spectrometer is reliable and

easy to align.

6.2 Measured spectra

6.2.1 Downconversion spectra using a “clean” pump

This subsection presents measurement results on the bandwidth of polarized light from

the source described in section 2.3, taken at an operating power of 35mW. Light in each

arm is studied separately. A polarizing filter selects the polarization state sent to the
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Figure 6.3: The coincidence spectrum of photon pairs. The coincidence spectrum (a) is man-
ifested as a single line obeying energy conservation. A projection spectrum of the coincidence
spectrum onto the λ1 axis is shown in (b).

monochromator.

The measurement results are presented in figure 6.2. It is clear from the figure that

the polarized spectra are almost indistinguishable. Hence the two decay paths in our

setup will have almost no spectrally distinguishable information.

This is confirmed in the measured coincidence spectrum (also called a joint spectrum

[142, 141]) shown in figure 6.3 (a). This spectrum is obtained by placing a monochroma-

tor in each arm of the source. The coincidence spectrum resembles a line corresponding

to energy conservation (within the bandwidth of the monochromators). The measured

coincidence spectra are degenerate and centred on 702.2 nm, just like the single photon

spectra in figure 6.2. A projection of the coincidence spectra onto the λ1 (or λ2) axis

also reveals a full-width at half-maximum of approximately 4.5 nm (figure 6.3 (b)). This

is consistent with other single photon spectra (e.g. figure 2.5).

6.2.2 Downconversion spectra using a “dirty” pump

The purity of the polarization correlations from the source was quite high for typical

pump powers of about 35 mW. The correlation quality, however, was found to degrade

with higher pump power. This decrease in the polarization state purity was observed

by measuring the visibility of the polarization curves in two polarization bases (HV and
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Figure 6.4: Change in polarization correlation quality with increasing pump power. The po-
larization correlation in the ±45◦ basis is reduced dramatically above 40 mW of pump power,
suggesting that the collected photon pairs are no longer in a maximally entangled state.

±45◦). The visibility of the correlation curves is plotted for different pump power levels

in figure 6.4. Note that the decrease in average visibility becomes very pronounced after

the pump power increases beyond 40mW.

One possible reason for a decrease in the quality of polarization correlations is due

to increased accidental coincidences (section 2.3). Accidentals, however, should have

a similar effect for polarization correlations in both the HV and ±45◦ basis. This is

not the case here, and the loss of entanglement quality cannot be attributed to only

accidental coincidences.

The decrease in average visibility was investigated in more detail using two monochro-

mators in the heralded photon configuration [103]. The first monochromator was used

to select photons with a central wavelength of 702.2 nm in one arm, and acted as the

herald for the twins in the other arm. The second monochromator was scanned over a

range of 4 nm, and the number of heralded photons at each wavelength was noted. It

was found that after 40mW, a second peak in the SPDC spectrum appeared and grew

stronger with pump power and is illustrated in the series of plots in Figure 6.5.

The coincidence spectra of the photon pairs at 70 mW and 530 mW (well into

the pump power range when the second peak is present) reveal two lines as shown in

firgure 6.7. The main line of spectral correlations that was present at lower powers

corresponded to the 351.1 nm line and the second spectral line that appeared at higher
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Figure 6.5: Emergence of a second spectral peak as pump power increases. The emergence of
the second peak is correlated to the decrease in the quality of polarization correlations, and is
evidence that information leakage into the spectral degree of freedom leads to distinguishable
decay processes that degrade the quality of polarization-entanglement. In this case, the second
peak in the spectrum arises from a second pump line (351.4 nm) of the Argon ion laser that
becomes stronger when the lasing power is increased.
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Figure 6.6: The calculated emission angles of SPDC at 702.2 nm and 702.8 nm under experi-
mental conditions. The emission is stronges in the direction where the phase matching value
equals 1. In reference to figure 2.4 (a), this is the emission angle in the plane where θ = 0◦.

power corresponded to the 351.4 nm line. This second spectral line only appears at a

higher lasing power because it had a higher energy threshold. Together, the figures 6.4,

6.5 and 6.7 provide evidence that spectral distinguishability of downconversion processes

have a detrimental effect on the purity of polarization-entanglement.

Strictly speaking, both pump wavelengths are able to generate pure entangled states.

Why then does the entanglement quality degrade? The reason for this is not exactly

clear. Possibly the longitudinal compensation technique (section 2.2.1) is optimized only

for 702.2 nm and not for 702.8 nm. It should also be noted that the degenerate entangled

photon pairs generated by the second pump line have a wavelength of 702.8 nm. Conse-

quently, the emission angle of the 702.8 nm pairs is different from that of the 702.2 nm

pair generated by the original pump wavelength. This is illustrated in figure 6.6. The

experimental setup is optimized to collect light from the 702.2 nm pairs, and it is not

possible to accomodate the light generated by both pump wavelengths in the selected

experimental design. It is very likely that unentangled photon pairs are being collected

from the second pump wavelength.
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Chapter 7

Preparing Bell states with

controlled “White Noise”

The previous chapters have dealt with the issues of implementing and characterizing a

photon pair source. The remainder of this thesis, will be devoted to applications for

the generated photon pairs. The content of this chapter has been adopted from a paper

published in Laser Physics [63]. The methods described here were first presented in the

LASPHYS 05 conference held in Kyoto, Japan (2005).

7.1 Introduction

In the preceding chapters, most of the attention was given to the maximally entangled

Bell states, since these states are most useful for quantum communication protocols.

In a realistic situation, the photons would interact with the environment and their

polarizations could change arbitrarily, or they could get mixed with stray light leading

to mistaken correlations at the detectors. These arbitrary changes lead to a reduction

in the (anti-)correlations between the polarization states of pairs of photons. This loss

of polarization correlations is called noise, and because such losses degrade the quality

of quantum communication, it becomes desirable to study noisy states and their effects.

Theoretically, the disturbance due to an eavesdropper is often modeled as white

noise as this easy to express analytically. A Werner state [143] is an example of a Bell
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state plus white noise. It can be expressed as

ρW (r) = (1− r)|Ψ−〉〈Ψ−|+ r

4
1 (7.1)

where r is the noise admixture.

However, real noise often does not fit the characteristics of white noise[144]. To test

theoretical claims of security protocols based on white noise, it is desirable to make

idealized sources of noise. The creation of Werner states has been reported previously

[145, 146, 147], and the common feature of these experiments was the use of a technique

called temporal decoherence.

Temporal decoherence occurs when one photon in a Bell state is delayed beyond the

coherence time. Thus, when coincidences are looked for the polarization correlations are

less than ideal. In principle, this could be achieved by making one of the photons take a

longer optical path, like an optical fiber. Previous experiments have all utilized quartz

plates of varying thicknesses to achieve the timing delay. However, this is cumbersome

because one would need a large collection of quartz plates to input an arbitrary amount

of noise.

This chapter describes two methods for generating Werner states that avoid the

use of quartz plates. The first method still uses temporal decoherence but is achieved

by manipulating the detection apparatus directly. The second method uses blackbody

radiation.

7.2 Making noise

7.2.1 Inducing noise via a time window

It is possible to induce white noise in our measured Bell state by manipulating the

coincidence time window τ of the measurement apparatus (section 2.3). The ratio of

photon pairs to singles for our experimental setup is approximately 20%. Hence, the

majority of detected photons are not identified as part of a pair. To simulate noise, it

is sufficient to make the detection system count these single photons as coincidences.

If the length of the time window τ was increased, the probability of detecting an
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accidental coincidence increases. Essentially the system begins identifying unrelated

photons as a pair. These are accidental coincidences αc. Because the polarization of

unrelated photons are not correlated, accidental pairs lead to white noise. A simple

model that relates the visibility of the polarization correlations V to τ is the following:

V =
Nmax −Nmin

Nmax +Nmin + 2s1s2τ

=
V◦

1 + 2s1s2
Nmax+Nminτ

=
V◦

1 + bτ
(7.2)

In this expression, V◦ is the visibility that would be obtained the measurement apparatus

had an infinitely sharp timing resolution (i.e. the τ = 0). The model assumes that the

αc is a constant value 1.

In experiment, the time window value is controlled by a variable capacitor, allowing

the width to be varied continuously. For each value of the time window a polarization

correlation test was performed. Figure 7.1 shows the measured visibilities as function

of time window values 2. A least squares fit to the data using equation (7.2) yields

V◦ = 0.97 and b = 0.000675. This is taken to mean that before any noise was added,

the visibility of the polarization correlations was at 97%.

7.2.2 Inducing noise via a blackbody

In the second method, an incandescent light bulb was used to mix thermal light with

the collected downconversion light. An increase in noise is obtained by increasing the

power delivered to the light bulb. Although increasing the power delivered to the light

bulb would change the temperature of the filament and change the spectrum of the

thermal light, this problem can be overcome by using interference filters with a FWHM

of 5 nm (which is slightly larger than the bandwidth of light collected into single mode

fibers at the SPDC source).

1See section 2.3 for a discussion of how to calculate V and how noise reduces its value.
2 The measurements were limited to a maximum value of the time window because of the electronic

components.
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Figure 7.1: The visibility plotted against coincidence window time. Increasing the time window
leads to more accidental coincidences and a corresponding loss of polarization correlation purity.
The solid line is a fitted curve provided by a theoretical model. This figure is adapted from
reference [63].
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correlation. This figure is adapted from reference [63].

The light bulbs are placed at any suitable position along the photon transmission

channel. The resulting mixed light is then checked for polarization correlations. The

change in visibility with power is shown in figure 7.2. The results show that it is

possible to cause polarization correlations to reach 0% by this method, as the limit is

the maximum power the light bulb can sustain.

The drop in visibility at lower bulb power levels is much faster than at high power.

A simple model for the variation of V with bulb power is not available because it is

quite difficult to account for the saturation behavior of the detection apparatus 3.

The noise admixture of a Werner state, r, and the visibility are related simply by

visibility = 1− r. To confirm that these methods do create a Werner state, polarization

state tomography was performed and it was found that the noise admixture calculated

from these density matrices vary with visibility as predicted.

3As bulb power increases, the number of thermal photons detected increases. The detection system,
however, has a dead time on the order of 1.5 µ s per detection event. This dead time causes fewer
photons to be counted.
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7.3 Density matrix of Werner states

The general density matrix of a Werner state looks like

ρW =



r
4 0 0 0

0 2−r
4

r−1
2 0

0 r−1
4

2−r
4 0

0 0 0 r
4


. (7.3)

The r values represent the amount of noise in the system. The ideal singlet state

will have r = 0, and only the central terms of the density matrix will be non-zero. Thus,

the values of r can be easily extracted from the elements of the density matrix by the

following equation:

r = 1 +
2
3

(ρ11 + ρ44 − ρ22 − ρ23) +
1
3

(ρ23 + ρ32) . (7.4)

Polarization state tomography was performed for a number of states that have dif-

ferent polarization correlation visibilities. The noisy states used for tomography were

generated by the method of mixing light from a light bulb. For each state, an estimated

density matrix was obtained from which the associated r-value could be determined.

The r values were plotted against the corresponding polarization correlation quality and

are shown in figure 7.3. The measured data follows the theoretical model consistently,

providing evidence that our selected method produced Werner states consistently over

the entire range of polarization visibilities.

7.4 Spectral character of the Werner state

In most methods of producing Werner states the noise can be removed in trivial ways.

For example, if a quartz plate was used to introduce timing delays, another quartz plate

of the same thickness oriented properly at another place in the transmisison line would

reverse the delay. Similarly, in the method of generating noisy states via a larger time

window, the noise could be removed by reducing the time window size.

A Werner state created by mixing with stray light, however, is much harder to
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Figure 7.4: Coincidence spectrum of a Werner state. The amount of background light here
was sufficient to create a Werner state with r = 46%. The pump power was increased to allow
the spectrum to be collected faster (leading to the two downconversion lines), but the raised
background is indicative of the thermal light that has been mixed with the collected photon
pairs. This figure is adapted from reference [63].

correct. In particular, one would need to see if thermal photons can be distinguished

from SPDC photons. To better understand these effects the coincidence spectrum of

the Werner states was measured.

The coincidence spectra for a Werner state obtained by using thermal light mixing is

presented in figure 7.4. In the figure the downconversion lines are in a raised background

of coincidences. This background light is scattered almost uniformly across the coinci-

dence spectrum, while the downconversion light are restricted by energy conservation

(with the pump frequencies) to two lines. Under normal operating conditions (20 mW

of pump power), the weaker line corresponding to 351.4 nm of UV light is not present.

It is present in this graph, because the pump power was increased to facilitate a quicker

mapping of the coincidence spectrum. More importantly, however, the thermal light

seems to be mixed in equally over the entire collected spectrum. With very narrow

spectral filters one could hopefully remove most but never all of the thermal light. In

this sense, an irreversible Werner state has been created.



84

Chapter 8

An experimental demonstration

of the Ekert QKD protocol

8.1 Entanglement-based QKD

Widespread interest in quantum communication began with the publication of proposals

for quantum key distribution (QKD) between two parties (traditionally the transmitter

is called Alice and the receiver is called Bob) over two decades ago [14]. As pointed

out in chapter 1, QKD was the first quantum information protocol to be implemented

experimentally [23], and is still the most mature of any application that claims to be

based on quantum information. This is evident from the commercial QKD devices that

are now available.

Despite this, active research into QKD still continues because there are many in-

teresting questions left to be resolved. One of them involves the question of whether

entanglement can provide security for QKD beyond the BB84 protocol (and its vari-

ations, e.g. the decoy-state protocol [28]). This chapter describes a QKD experiment

that investigates such a possibility. Let us begin by reviewing in some detail the 1984

protocol of Bennett and Brassard (BB84).

BB84 seeks to distribute a random encryption key (or Vernam cipher) via correlated

preparation and mesurement of the polarization states of single photons [14, 23]. Its

strength was derived from the no-cloning theorem [21, 22] which stated that the po-
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larization state of a single quantum system cannot be copied perfectly. It also implied

that any attempt to copy the polarization state will cause its alteration or destruction.

A measurement attempt on the distributed key is revealed as errors in the expected

correlation of the polarization states.

Errors in the polarization correlations may also be caused by harmless decoherence,

but these are indistinguishable from errors caused by eavesdropping. Hence, BB84

treats all noise as evidence of an eavesdropper. In practice, all distributed keys will

initially have some noise, and classical communication must be employed to remove it,

with a final step where any knowledge possessed by an eavesdropper is eliminated. This

classical process of obtaining the final secure key is called error correction and privacy

amplification [148]. Whether a completely secure key can be distilled depends on the

fraction of errors in the initial key.

In BB84 each of the key-carrying photons has a well defined polarization state (figure

8.1). It is possible, in the preparation basis, to predict with absolute certainty the

outcome of a polarization measurement based on the knowledge of the polarization

state. In the language of classical physics, the photons are said to have an “element of

reality”.

This, however, is not necessary and QKD can be performed with photons whose

polarization state are not defined until a measurement has been carried out. Such a

protocol was proposed in 1991 by Ekert (E91) [18]. The E91 protocol makes use of

the states of maximally-entangled photon pairs where the measurement outcome on

one photon appears random unless compared with the measurement outcome of its

entangled twin. When both photons are measured in the same polarization basis they

will always turn out to be perfectly correlated (section 2.3). Hence, if Alice and Bob

share a stream of polarization-entangled photon pairs, they only have to randomly select

their measurement bases and half the time they will have measurements from which it

is possible to derive a secure key (figure 8.2).

The quality of entanglement for an ensemble of photon pairs can be measured by

looking at the polarization correlations in two different polarization bases (section 2.3).

An alternative method is to measure the degree of violation of a Bell inequality [149] (e.g.
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Figure 8.1: Schematic of the BB84 protocol for quantum key distribution between two parties
(Alice and Bob). Bob must decide randomly between the 0 and 1 bits, as well as the polarization
basis in which to encode the bit. Alice must choose randomly the measurement basis. Half the
time the transmitted state is not in the measurement basis and such outcomes are discarded.
The remaining cases can be used to derive a secure key. Since the polarization state is encoded
before transmission, the photons have “an element of reality”.

the Clauser-Horne-Shimony-Holt (CHSH) inequality [39])). The defining feature in E91

is the suggestion to use the degree of violation of a Bell inequality as a test of security.

This conjecture is related to a concept called the monogamy of entanglement [150]: the

entanglement between two systems decreases when a third system (for example, the

measurement apparatus of an eavesdropper) interacts with the pair.

The drawback of the original E91 protocol was that it lacked a quantitative method

for determining the knowledge of an eavesdropper. This was supplied by Fuchs et al. [19]

who showed that the error fraction in an E91 key is related to the degree of violation of

the CHSH inequality. For entanglement-based QKD it is sufficient to monitor the CHSH

violation and then derive the error fraction for use in privacy amplification. Note that

the error fraction in the E91 key is exactly the background that decreases the visibility

of polarization correlation measurements in section 2.3.

Although BB84 and E91 utilise different aspects of quantum mechanics, the security

of their distributed key can be determined by looking only at the associated error

fraction (sometimes known as the quantum bit error rate or QBER). For this reason

both protocols were considered to be equivalent [151]. Entanglement was regarded

simply as another source of correlations. This approach had practical benefits. The

original protocol of BB84 involves an active choice when encoding the logical bits 0
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Figure 8.2: Schematic for an entanglement-based QKD protocol. Alice and Bob share a stream
of polarization-entangled photon pairs. Unlike BB84, they only have to choose the measurement
basis. Half the time their choices coincide, in which case a random encryption key can be
derived. The remaining cases are discarded. The polarization state of individual photons are
not determined until measurement, and are said to lack “an element of reality”.

and 1 into the polarization states, requiring a trusted high-bandwidth random number

source [152]. In comparison no active choice is necessary for entanglement-based QKD.

Hence the original attraction of entanglement was its ability to remove the need for

some random number generators. The price of entanglement-based QKD is a lower key

generation rate due to the limited brightness of contemporary entangled photon pair

sources.

However, the notion that evidence of non-local correlations can be used to guarantee

the security of an exchanged key remained alive. The idea was sometimes used qualita-

tively in QKD experiments. Consider the first report of a complete entanglement-based

QKD system communicating over dedicated optical fibres by Jennewein et al. [54]. In

that experiment a Bell-type inequality (known as the Wigner inequality) was monitored,

and security was assumed when the inequality was violated. However, no quantitative

measure of security (in terms of error fractions or otherwise) was obtained from the

observed violation.

It is only recently that theoretical work by Acin et al. [153] has allowed a quantitative

security measure to be obtained from a Bell inequality. In particular, they showed that

the information accessible to an eavesdropper, IE , can be derived from the degree of
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Figure 8.3: Orientation of different detector polarizations.

violation of the CHSH inequality, S with the following relationships:

IE = h

(
1 +

√
(S/2)2 − 1
2

)
, h(x) = −xlog2(x)− (1− x)log2(1− x). (8.1)

This chapter describes an entanglement-based QKD experiment that implements the

Acin proposal. Not only is the experiment novel, it is also in a sense, the first complete

implementation of QKD which is in the spirit of E91 1.

8.2 Experiment

8.2.1 Monitoring polarization states

The key idea behind the implementation is to use a minimal combination of three

polarization bases A0, A1, A2 on one side, and two distinct bases B0, B1 on the other

side (figure 8.3) for performing polarization measurements on a photon pair in a singlet

state |Ψ−〉 = 1√
2
(|HAVB〉 − |VAHB〉).

For convenience states in basis B0 and B1 are labeled as 1’, 2’ and 3’, 4’ respectively

while states in basis A0, A1 and A2 are labeled as 1, 2, 3, 4, 5 and 6. The bases were

chosen so as to give us two sets of correlations; one of them is to be kept aside for

deriving a key while the other set should be used to calculate the two-party CHSH

value denoted as S. To fulfill this aim at least one pair of the bases must be identical.

1The experiment was a team effort, and my principal co-workers were Ivan Marcikic, Matthew Peloso,
Loh Huan Qian, Antia Lamas-Linares and Christian Kurtsiefer, with theoretical support provided by
Valerio Scarani.
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In the experiment this is supplied by the base pair A0 and B0 which correspond to the

HV polarization basis (and states 1 and 1’ are identified with the |V 〉 state while 2 and

2’ are identified with |H〉). In the absence of noise, coincidences in this pair of bases

should lead to a perfectly anti-correlated measurement result, i.e. coincidences should

happen such that state 1 occurs with state 2’ and 2 occurs with 1’. Hence, correlations

in this base pair are used to generate a key.

The remaining base combinations of A1 and A2 on one side with B0 and B1 on the

other side are chosen such that the CHSH inequality can be tested. I will not derive the

CHSH inequality here but refer the reader to chapter 20 of [154]. For our purposes, it is

sufficient to note that the CHSH value is determined using four correlation coefficients

E such that:

S = E(A1, B0) + E(A1, B1) + E(A2, B0)− E(A2, B1). (8.2)

When only classical correlations exist then |S| ≤ 2. The experimental value of the

correlation coefficient E(x, y) may be defined as:

E(x, y) =
nx+y+ + nx−y− − nx+y− − nx−y+

nx+y+ + nx−y− + nx+y− + nx−y+

. (8.3)

The expression ni,j refers to the number of coincidence events between detectors mon-

itoring state i on one side and state j on the other side, collected during a given inte-

gration time T .

Measurement bases are chosen such that a maximal violation of equation (8.2) with

|S| = 2
√

2 could be expected. Therefore, basis B1 has to be chosen to correspond to

±45◦ linear polarization, and bases A1, A2 need to form an orthogonal set corresponding

to ±22.5◦,±67.5◦ linear polarizations (figure 8.3). With that, we evaluate for example

E(A1, B0) =
n3,2′ + n4,1′ − n3,1′ − n4,2′

n3,2′ + n4,1′ + n3,1′ + n4,2′

=
n67.5◦,V + n−22.5◦,H − n67.5◦,H − n−22.5◦,V

n67.5◦,V + n−22.5◦,H + n67.5◦,H + n−22.5◦,V
, (8.4)

and the other coefficients in equation (8.2) accordingly.
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Figure 8.4: Experimental QKD setup. Polarization-entangled photon pairs are generated via
parametric downconversion pumped by a laser diode (LD, PO) in a nonlinear optical crystal
(BBO) with walk-off compensation (WP, CC) into single mode optical fibers (SMF). A free-
space optical channel for one detector set (Bob) is realized using small telescopes on both sides
(ST, RT) with some spatial and spectral filtering (PH, F). Both parties perform polarization
measurements in bases randomly chosen by beam splitters (B1-B3), and defined by properly
oriented wave plates (H1-H3) in front of polarizing beam splitters (PBS) and photon counting
detectors. Photo events are registered separately with time stamp units (TU) connected to two
personal computers (PC) linked via a classical channel.
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The random choice of measurement bases on each side is performed with a com-

bination of polarization-independent beam splitters (B1-B3, figure 8.4), with a 50:50

splitting ratio. This provides a base choice without an explicit generation of a random

number by a device not necessarily trusted. The dichotomic variables in each basis

setting corresponding to the angle setting shown in figure 8.3 is defined with half wave

plates with appropriate orientations of their optical axes (H1 at 11.25◦, H2 and H3 at

22.5◦) with respect to the vertical direction. The remaining elements of the experiment

are a compact source of entangled-photon pairs, and the software to detect coincidences

and distill a secure key [113].

8.2.2 A compact SPDC source

Polarization-entangled photon pairs are generated in a compact diode-laser pumped

non-collinear type-II parametric downconversion process, based on the source described

in chapter 2. The entire source was mounted on either side of a breadboard in order

to reduce its size (80 × 50 × 60 cm3). Figure 8.5 displays side and top views of the

experimental source.

The laser diode produced a pump beam whose wavelength was 407 nm at a power

of 40mW. The beam is used to pump a 2 mm thick β-Barium Borate (BBO) crystal.

Typically, the visibility of polarization correlations (section 2.3) from such a source does

not exceed 92%. This is due to the broad spectrum of the pump wavelength which is

revealed in the polarization dependent coincidence spectra shown in figure 8.6.

8.2.3 Experimental results

To demonstrate a key generation scenario under realistic conditions, we separated the

two measurement devices by approximately 1.5 km. This introduced a link loss of about

3 dB caused primarily by atmospheric absorption at the downconverted wavelength of

810 nm and realistic fluctuations in the transmission due to scintillation in the atmo-

sphere. The experiment was carried out during night time to reduce the influence of

background light. Additional background light suppression was accomplished using a

spatial filter (PH) with an acceptance range of Ω = 2 · 10−8 sr and an interference filter
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Figure 8.5: Compact source of entangled photon pairs. This was the diode-pumped source
that supplied entangled photon pairs for the QKD demonstration. The pump beam profile is
corrected in the lower deck (using anamorphic prisms) and then sent to the SPDC crystal in
the upper deck. To restrict footprint of the source further, the downconverted light is reflected
into the compensation optics and single mode fiber couplers. The apparatus was mounted on a
breadboard drilled with holes that are spaced 1 inch apart. This source was first built by Antia
Lamas-Linares and Loh Huan Qian.
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Figure 8.6: Coincidence spectrum of collected photon pairs from the diode pumped source. The
spectra were measured after the photon pairs had passed through horizontal (H) and vertical
(V) polarization filters. The measurements reveal that the the polarization of the photon pairs
may be distinguished from their spectra. These measurements were carried out by Loh Huan
Qian.
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with a peak transmission of 50% and a spectral width of 4.5 nm (FWHM) around the

center wavelength of 810 nm.

Identification of coincidence events between both sides was performed during the

experiment in software from a list of detection times registered by a time stamp unit

with respect to local reference clocks. The corresponding coincidence time window for

that scheme was chosen to be 3.75 ns, supplying additional suppression of accidental

coincidences.

The experimental results from one typical 8 hour run are shown in figure 8.7. For the

entire test run, the correlation value S remained at approximately 2.5, well clear of the

value S = 2 at which no secure key can be distilled. The corresponding error fraction

(QBER) in this experiment was approximately 4%. Error correction was performed

(using the Cascade protocol [155]) on blocks of raw key of at least 10000 bits collected

within 3 seconds. Hence, a final secure key was obtained at an average rate of 350 bits

s−1. The results show that a secure key was distributed over 1.5 km of free space via an

E91 protocol.

8.3 Extending QKD beyond BB84

It is interesting to consider if this experiment constitutes a ‘device-independent’ QKD

demonstration [153], where source and detection apparatus may be released into the

control of an untrusted party. The answer is no. True device-independent QKD is

possible only if the measured CHSH inequality represents irrefutable proof of entangle-

ment. A Bell test using contemporary devices allows for loopholes (e.g. the detection

loophole due to low detector quantum efficiency) where it may be argued that factors

other than entanglement caused the apparrent violation. Such loopholes may only be

closed using assumptions (e.g. fair sampling) that hold when the devices are under

careful control. Hence, while device-independent QKD is allowed in principle, it cannot

yet be implemented with contemporary technology.
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Figure 8.7: Experimental results in a key distribution experiment implementing an E91 protocol.
The experiment ran for 8 hours until sunrise, when excessive background light caused too many
accidental coincidences to be detected. In panel 2, the abbreviations EC and PA stand for Error
Correction and Privacy Amplification respectively.
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Chapter 9

Experimental Falsification of the

Leggett Non-local Variable Model

In this penultimate chapter, we will turn our attention to a fundamental question about

the nature of entanglement. In particular, I want to describe an experiment that tested

whether the quantum correlations between polarization-entangled photon pairs could

be described by a physical model of photon pairs where the individual polarization

states are retained. The concept that individual particles must have a well defined

state comes from classical physics. This concept was described by the EPR trio as “an

element of reality” [32]. In the EPR formulation, each “element of reality” must be a

local variable 1. In the context of light polarization, it is taken to mean that individual

photons exist in a pure polarization state.

However, according to the rules of quantum mechanics, photons in a polarization-

entangled state lose this “element of reality”. The state of individual photons that are

polarization-entangled is not well-defined unless when considered together with their

entangled partner. Correlations from entangled photon pairs cannot be replicated by

pairs of photons that share only local variables, and this has since been confirmed

experimentally with violations of the Bell inequality.

The question then becomes the following: can entanglement type correlations be ex-

plained by particles that share non-local variables? In 2003, Anthony Leggett suggested

1As stated in chapter 1, EPR’s concept of locality is a conjunction of special relativity as well as
additional classical assumptions about “completeness” in describing physical states [41].
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that there was one way to rule out a particular class of models that use non-local vari-

ables. Specifically, Leggett proposed to check whether entanglement-type correlations

could be given by a pair of spin-polarized particles that communicated in a non-local

manner [156].

In the context of light polarization, this is a very special type of model where individ-

ual photons retain their “element of reality” (i.e. pure polarization state) but had access

to (as yet unknown) non-local variables that established the inter-photon correlations.

Leggett showed that such a physical model could not reproduce all the correlations

predicted by quantum mechanics. Similary to Bell’s theorem, Leggett showed that

inter-photon correlations from his non-local variable model never exceeded a bound.

This bound can be tested in the form of an inequality (similar to Bell’s inequality), and

is now known as Leggett’s inequality.

Experimentally, a violation of Leggett’s inequality is more demanding than Bell’s

because of the higher entanglement quality that is necessary. The first experiment in

this direction was by Gröblacher et al. who showed that contemporary SPDC sources

provided polarization-entangled photon pairs of sufficient quality [47]. Motivated by

this work and a simplified theoretical derivation by Cyril Branciard, Nicolas Gisin and

Valerio Scarani, my supervisors and I performed an experiment to violate the Legget

inequality. The results have been published together with Branciard et al. in [48]. The

remaining material in this chapter was adapted from that paper with very few changes.

9.1 Introduction

Quantum physics provides a precise rule to compute the probability that the measure-

ment of A and B performed on two physical systems in the state |Ψ〉 will lead to the

outcomes (rA, rB):

PQ(rA, rB|A,B) = 〈Ψ|PrA ⊗ PrB |Ψ〉 (9.1)

where Pr is the projector on the subspace associated to the measurement result r. For

entangled states, this formula predicts that the outcomes are correlated, irrespective

of the distance between the two measurement devices. Indeed, this was the puzzle
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presented by the trio of Einstein, Podolsky and Rosen [32].

A natural explanation for correlations established at a distance is pre-established

agreement: the two particles have left the source with some common information λ,

called a local variable (LV), that allows them to compute the outcomes for each possible

measurement; formally, rA = fA(A, λ) and rB = fB(B, λ). The shared information are

sometimes called local hidden variables because in principle they can exert an influence,

even when they are not known.

Satisfactory as it may seem a priori, this model fails to reproduce all quantum

correlations: this is the celebrated result of John Bell [35], by now tested in a very

large number of experiments. The fact that quantum correlations can be attributed

neither to LV nor to communication below the speed of light is referred to as quantum

non-locality.

While non-locality is a striking manifestation of quantum entanglement, it is not

yet clear how fundamental this notion really is: the essence of quantum physics may

be somewhere else [157]. For instance, non-determinism is another important feature

of quantum physics, with no a priori link with non-locality. Generic theories featur-

ing both non-determinism and non-locality have been studied, with several interesting

achievements (e.g. [158, 159]); but it is not yet clear what singles quantum physics out.

In order to progress in this direction, it is important to learn which other alternative

models are compatible with quantum physics, which are not. Bell’s theorem having

ruled out all possible LV models, we have to move on to models based on non-local

variables (NLV). The first example of a testable NLV model was the one by Suarez

and Scarani [160], falsified in a series of experiments a few years ago [161]. A different

such model was proposed more recently by Leggett [156]. This model supposes that

the source emits product quantum states |α〉⊗ |β〉 with probability density ρ(α, β), and

enforces that the marginal probabilities must be compatible with such states:

P (rA|A) =
∫
dρ(α, β)〈α|PrA |α〉 , (9.2)

P (rB|B) =
∫
dρ(α, β)〈β|PrB |β〉 . (9.3)
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The correlations however must include some non-local effect, otherwise this would be a

(non-deterministic) LV model and would already be ruled out by Bell’s theorem. What

Leggett showed is that the simple requirement of consistency (i.e., no negative proba-

bilities should appear at any stage) constrains the possible correlations, even non-local

ones, to satisfy inequalities that are slightly but clearly violated by quantum physics. A

recent experiment [47] demonstrated that state-of-the-art setups can detect this viola-

tion in principle. However, their falsification of the Leggett model is flawed by the need

for additional assumptions, because the inequality they used , just as the original one by

Leggett, supposes that data are collected from infinitely many measurement settings.

In this chapter, we present a family of inequalities, which allow testing Leggett’s

model against quantum physics with a finite number of measurements. We show their

experimental violation by pairs of polarization-entangled photons. We conclude with an

overview of what has been learned and what is still to be learned about NLV models.

9.2 Theory

We restrict our theory to the case of polarization-based qubits. We consider von Neu-

mann measurements, that can be labeled by unit vectors in the Poincaré sphere S:

A → ~a and B → ~b; their outcomes will be written rA, rB ∈ {+1,−1}. Pure states of

single particles can also be labeled by unit vectors ~u,~v in S. Leggett’s model requires 2

P (rA, rB|~a,~b) =
∫
dρ(~u,~v)P~u,~v(rA, rB|~a,~b) (9.4)

with

P~u,~v(rA, rB|~a,~b) =
1
4

[
1 + rA~a · ~u+ rB~b · ~v

+rArBC(~u,~v,~a,~b)
]
. (9.5)

The correlation coefficient C(~u,~v,~a,~b) is constrained only by the requirement that (9.5)

must define a probability distribution over (rA, rB) for all choice of the measurements

2The specific form of the marginal distributions is called Malus’ law in the case of polarization.
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~a,~b. Remarkably, this constraint is sufficient to derive inequalities that can be violated

by quantum physics [156]. The inequality derived (see also [162] for a subsequent shorter

derivation) reads

|E1(ϕ) + E1(0)|+ |E2(ϕ) + E2(0)| ≤ 4− 4
π

∣∣∣sin ϕ
2

∣∣∣ (9.6)

where the quantities Ej(θ) are defined from the correlation coefficients

C(~a,~b) =
∑

rA,rB

rArBP (rA, rB|~a,~b) (9.7)

as follows. The index j refers to a plane {~a ∈ S|~a · ~nj = 0} in the Poincaré sphere

(for ~nj ∈ S), and the two planes j = 1, 2 that appear in (9.6) must be orthogonal (i.e.

~n1 · ~n2 = 0). For each unit vector ~aj of plane j, let’s define ~a⊥j = ~nj × ~aj . Ej(θ) is

then the average of C(~aj ,~bj) over all directions ~aj , with ~bj = cos θ~aj + sin θ~a⊥j
3. This

is a problematic feature of inequality (9.6): it can be checked only by performing an

infinite number of measurements or by adding the assumption of rotational invariance

of the correlation coefficients C(~a,~b), as in [47]. It is thus natural to try and replace the

average over all possible settings with an average on a discrete set. This is done by the

following estimate. Let ~w and ~c be two unit vectors, and let RN be the rotation by π
N

around the axis orthogonal to (~w,~c). Then

1
N

N−1∑
k=0

∣∣∣(Rk
N ~c
)
· ~w
∣∣∣ ≥ uN =

1
N

cot
π

2N
. (9.8)

Indeed, let ξ̃ be the angle between ~w and ~c, and ξ = (ξ̃− π
2 ) mod π

N , such that ξ ∈ [0, π
N [:

then it holds
∑N−1

k=0 |(Rk
N~c) · ~w| =

∑N−1
k=0 | cos(ξ̃ + kπ

N )| =
∑N−1

k=0 sin(ξ + kπ
N ) = sin ξ +

NuN cos ξ ≥ NuN as announced.

Replacing the full average by the discrete average (9.8) in the otherwise unchanged

3This step is taken after (27) in the supplementary information for [47], before (8) in [162]. The
derivation of the original inequalities goes through the same step between (3.9) and (3.10) in [156].
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Figure 9.1: Dependency of the combined correlation parameters L(ϕ) as a function of the
separation angle ϕ for the quantum mechanical prediction for a pure singlet state, and bounds
for non-local variable models assuming an averaging over various numbers of directions N . This
figure is adapted from reference [48].

proofs [162], we obtain the following family of inequalities:

∣∣EN
1 (~a1, ϕ) + EN

1 (~a1, 0)
∣∣ +

∣∣EN
2 (~a2, ϕ) + EN

2 (~a2, 0)
∣∣

≡ LN (~a1,~a2, ϕ) ≤ 4− 2uN

∣∣∣sin ϕ
2

∣∣∣ (9.9)

where

EN
j (~aj , θ) =

1
N

N−1∑
k=0

C
(
~a k

j ,
~b k

j

)
(9.10)

with ~bj = cos θ~aj + sin θ~a⊥j and the notation ~c k = (RN,j)k ~c (the π
N -rotation is along

~nj). This defines 2N and 4N settings on each side. For a pure singlet state, the quantum

mechanical prediction for LN (~a1,~a2, ϕ) is

LΨ−(ϕ) = 2(1 + cosϕ) (9.11)

independent of N and of the choice of ~a1,~a2 since the state is rotationally invariant.

The inequality for N = 1 cannot be violated because u1 = 0 4. Already for N = 2,

4Actually, the data measured on a singlet state for N = 1, as in [47], can be reproduced by the explicit
NLV Leggett-type model presented in [47]. Indeed, the validity condition for that NLV model is that

there exists unit vectors ~u,~v in the Poincaré sphere such that, for all pairs of observables ~a,~b measured
in the experiment, one has |~a ·~b±~u ·~a| ≤ 1∓~v ·~b (Eq. (10) of [47]) or, equivalently, |~a ·~b±~v ·~b| ≤ 1∓~u ·~a.
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Figure 9.2: Experimental setup to test Leggett’s Inequality. Polarization-entangled photon pairs
are generated in β-barium-borate (BBO) by parametric downconversion of light from an Ar ion
pump laser (PL). After walk-off compensation (λ/2, CC), down-converted light is collected
behind interference filters (IF) into birefringence-compensated (FPC) single mode optical fibers
(SMF). Polarization measurements are carried out with a combination of a quarter wave plate
(λ/4) and polarization filters (PF) in front of photon counting detectors D1,2. The measurement
basis for each arm (1,2) is chosen by rotation of the wave plate and polarizing filter by angles
α1,2, β1,2 accordingly. This figure is adapted from reference [48].

however, quantum physics violates the inequality: this opens the possibility for our

falsification of Leggett’s model without additional assumptions 5. For N →∞, uN → 2
π :

one recovers inequality (9.6). The suitable range of difference angles ϕ for probing a

violation of the inequalities (9.9) can be identified from figure 9.1. The largest violation

for an ideal singlet state would occur for | sin ϕ
2 | = uN

4 , i.e. at ϕ = 14.4◦ for N = 2,

increasing with N up to ϕ = 18.3◦ for N →∞.

9.3 Experiment

We begin with our implementation of the fiber-coupled parametric downconversion

source for polarization-entangled photon pairs described in section 2.2. In order to

avoid a modulation of the collection efficiency with optical components due to wedge

errors in the wave plates, we placed subsequent polarization analyzing elements behind

Now, for the case N = 1, one would measure four sets of observables ~aj , ~bj = cos θ ~aj + sin θ ~aj
⊥ in

planes j = 1, 2 and for θ = 0, ϕ. Then for ~u = −~v orthogonal to both ~a⊥1 and ~a⊥2 and whatever θ, one
has | ~aj · ~bj ± ~v · ~bj | = | cos θ ∓ ~u · (cos θ ~aj + sin θ ~aj

⊥)| = | cos θ(1∓ ~u · ~aj)| ≤ 1∓ ~u · ~aj as required.
5Note that, since the model under test is NLV, there are no such concerns as locality or memory

loopholes. The detection loophole is obviously still open.
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the fiber.

The projective polarization measurements for the different settings of the two ob-

servers were carried out using quarter wave plates, rotated by motorized stages by

respective angles α1,2, and absorptive polarization filters rotated by angles β1,2 in a

similar way with an accuracy of 0.1 degree. This combination allows to project on arbi-

trary elliptical polarization states. Finally, the source was adjusted to produce photon

pairs in a singlet state.

After birefringence compensation of the optical fibers, we observed the correspond-

ing polarization correlations between both arms with a visibility of 99.5 ± 0.2% in the

H-V basis, 99.0± 0.2% in the ±45◦ linear basis, and 98.2± 0.2% in the circular polar-

ization basis. Typical count rates were 10100 s−1 and 8000 s−1 for single events in both

arms, and about 930 s−1 for coincidences for orthogonal polarizer positions. We mea-

sured an accidental coincidence rate using a delayed detector signal of 0.41 ± 0.07 s−1,

corresponding to a time window of 5 ns.

The two orthogonal planes we used in the Poincaré sphere included all the linear

polarizations for one, and H-V linear and circular polarizations for the other. That way,

we intended to take advantage of the better polarization correlations in the ’natural’

basisH-V for the downconversion crystal. Each of the 4N correlation coefficients C(~a,~b)

in (9.9,9.10) was obtained from four settings of the polarization filters via

C
(
~a,~b
)

=
n

~a,~b
+ n−~a,−~b

− n−~a,~b
− n

~a,−~b

n
~a,~b

+ n−~a,−~b
+ n−~a,~b

+ n
~a,−~b

(9.12)

from the four coincident counts n±~a,±~b
obtained for a fixed integration time of T = 4 s

each. For N = 2, 3 and 4, we carried out the full generic set of 8, 12, and 16 setting

groups, respectively, with each EN
j (0) containing a H-V analyzer setting.

A summary of the values of L corresponding to inequalities for N = 2, 3 and 4

are shown in Fig. 9.3, together with the corresponding bounds (9.9) and the quantum

expectation for a pure singlet state (9.11). The corresponding standard deviations in

the results were obtained through usual error propagation assuming Poissonian counting

statistics and independent fluctuations on subsequent settings. For N = 2, we already

observe a clear violation of the NLV bound; the largest violation we found was for
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Figure 9.3: Experimental results for the observed correlation parameters LN (dots), the quan-
tum mechanical prediction for a pure singlet state (curved lines, dashed), and the bounds for
the non-local variable models (almost straight lines). In all cases, our experiment exceeds the
NLV bounds for appropriate difference angles ϕ. This figure is adapted from reference [48].
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N ϕ LNLV Lexp ± σ Lexp − LNLV

2 12.5◦ 3.8911 3.9127± 0.0033 6.45σ
2 15◦ 3.8695 3.8970± 0.0036 7.59σ
2 17.5◦ 3.8479 3.8638± 0.0042 3.83σ
3 12.5◦ 3.8743 3.9140± 0.0027 14.77σ
3 15◦ 3.8493 3.8930± 0.0030 14.58σ
3 17.5◦ 3.8243 3.8608± 0.0034 10.67σ
3 20◦ 3.7995 3.8400± 0.0036 11.15σ
4 12.5◦ 3.8686 3.9091± 0.0024 17.01σ
4 15◦ 3.8424 3.8870± 0.0026 16.84σ
4 17.5◦ 3.8164 3.8656± 0.0029 17.11σ

Table 9.1: Selected values of L violating the NLV bounds LNLV for different averaging numbers
N .

N = 4 with about 17 standard deviations above the NLV bound. As expected, the

experimental violation increases with growing number of averaging settings N . Selected

combinations of (N,ϕ) violating NLV bounds are summarized in table 9.1.

Our results are well-described assuming residual colored noise in the singlet state

preparation [144]. We attribute the small asymmetry of Lexp in ϕ (see inset in Fig. 9.3)

to polarizer alignment accuracy.

9.4 Overview and Perspectives

After the very general motivation sketched in the introduction, we have focused on

Leggett’s model. Let’s now set this model in a broader picture. Non-locality having

being demonstrated, the only classical mechanism left to explain quantum correlations

is the exchange of a signal. It is therefore natural to assume, as an alternative model to

quantum physics, that the source produces independent particles, which later exchange

some communication.

This communication should travel faster than light, so the model has to single out

the frame in which this signal propagates: it can be either a preferred frame (“quantum

ether”), in which case even signaling is not logically contradictory [163]; or a frame

defined by the measuring devices, in which case the model departs from the quantum

predictions when the devices are set in relative motion [160, 161]. Obviously, there are

NLV models that do reproduce exactly the quantum predictions. Explicit examples
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are Bohmian Mechanics [164] and, for the case of two qubits, the Toner-Bacon model

[165]. Both are deterministic. Now, in Bohmian mechanics, if the first particle to be

measured is A, then assumption (9.2) can be satisfied, but assumption (9.3) is not. This

remark sheds a clearer light on the Leggett model, where both assumptions are enforced:

the particle that receives the communication is allowed to take this information into

account to produce non-local correlations, but it is also required to produce outcomes

that respect the marginals expected for the local parameters alone.

As a conclusion, it must be said that the broad goal sketched in the introduction,

namely, to pinpoint the essence of quantum physics, has not been reached yet. However,

Leggett’s model and its conclusive experimental falsification reported here have added

a new piece of information towards this goal.
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Chapter 10

Final Remarks

This thesis has presented several results on the utility of bulk SPDC sources for entanglement-

assisted quantum communication and fundamental tests of physics. In summary, the

most important points are the following:

• A model giving the absolute rate of emission for fiber-coupled SPDC sources has

been provided (chapter 3). This model shows that contemporary Kwiat95-type

sources are operating near their optimal output.

• A minimal and optimal polarimetric technique was demonstrated for character-

izing the polarization states of entangled photons (chapter 4). This method is

easily extended to multi-photon states. It should be noted that the number of

measurement outcomes grow exponentially with the number N of photons in the

system (as 4N ). However, this is not as bad as it seems as the number of dimen-

sions of the Hilbert space also grows exponentially with N , and the tetrahedron

POVM is actually the most efficient method of state estimation that is possible

with separable measurements.

• Fiber-coupled Kwiat95 type sources are able to give high quality entangled photon

pairs at a reasonable rate, enabling very sensitive tests of quantum non-locality

(chapter 9).

• Such sources can be miniaturized sufficiently, allowing them to be taken into the

field to demonstrate advanced QKD protocols (chapter 8).
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The model for absolute rate emission, in particular, has implications on the direction

that future sources of entangled photons will take. In chapter 1 it was suggested that

a future quantum communication network might employ atom-based memories and

quantum repeaters. This requires light that is within a very narrow spectral bandwidth

that should be on the order of tens of MHz.

As a comparison, consider that the spectral brightness of the source described in

chapter 2 is about 4 ×10−4 pairs s−1 mW−1 MHz−1. Based on the model presented in

chapter 3, it is not expected that Kwiat95-type sources will become very much brighter.

This is because the ultimate limit to the spectral brightness of bulk SPDC sources is

determined only by longitudinal phase mismatch. For example, the strongest periodi-

cally poled SPDC source reported in literature is still “only” at a spectral brightness of

0.5 pairs s−1 mW−1 MHz−1 [94]. A dramatic improvement to the photon pair rate (by

several orders of magnitude) in an atomic bandwidth is not likely to be obtained from

bulk SPDC crystals in a single pass pump configuration.

This is an important result, especially since spectral brightness (along with entan-

glement quality) will be increasingly used to evaluate entangled photon sources. Hence,

although Kwiat95-type sources have a very high quality of entanglement, their gener-

ated photon pairs are not useful in advanced quantum communication protocols that

require interaction with atom-like systems. To overcome this problem there are two

possible strategies.

The first option is to perform SPDC in a confined volume as in a periodically-

poled waveguide. In such a confined volume, SPDC leads to a much higher observed

spectral brightness of about 1.6 pairs s−1 mW−1 MHz−1 as reported by Fiorentino et

al. [95]. Furthermore, the same authors have estimated that with a properly designed

waveguide, it is possible to achieve rate of about 2000 pairs s−1 mW−1 MHz−1 [96].

This suggests that waveguide-based SPDC can generate enough photons to saturate

conventional avalanche photo-diodes with only a few milliwatts of pump power. From

such a large rate of photon pairs, it is then possible to select only pairs within a very

narrow spectrum using filters. One possible problem is that even without very aggressive

filtering, the pair to singles ratio is not very high (about 18%). Hence, most of the time,
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the detectors are saturated due to detecting unuseable photons.

The other option is to perform SPDC within an optical cavity that also enhances the

downconversion. In this way, the rate of downconversion photons is increased within the

bandwidth defined by the cavity. This method was first tried out by Ou and Lu [166]

who recorded a substantial increase in the photon pair rate within a narrow bandwidth.

However, subsequent experiments have failed to produce high quality polarization en-

tanglement. One reason for this is that the correlation time between a signal and idler

photon become too large and too much noise is admitted into the system.

Alternatively, some groups have been pursuing entangled photon sources based on

four-wave mixing in fibers [97] where they utilize the χ(3) tensor. Although the elements

of this tensor are weaker than in χ(2), this is overcome by using very long fibers. An even

more tentative possibility is to check for non-classical correlations in spontaneous light

that is generated by warm atomic vapors. In these cases, the experimental setups are

relatively simple and classical correlations have already been detected [167, 168, 169].

However, the conditions required for stable pair generation are still unknown and is an

area of on-going research.

In short, contemporary entangled photon sources have not yet achieved the goal

of having atomic-linewidth emission that is simultaneously bright and of high-quality

entanglement. In the forseeable future, the study of entangled photon sources will

continue to be very active. Despite their limitations, bulk-crystal SPDC light sources

still represent the cutting edge in generating entangled light, and will continue to play

a role in basic research and validation of quantum communication protocols.
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Appendix A

Vector Descriptions of

Polarization States

This thesis makes extensive use of vector notations (known as Stokes and Jones Vectors)

to express polarization states of light. Although the usage of polarization vectors is

concentrated in chapter 4, they do appear throughout the thesis, and so it was decided

that a separate section devoted to their derivation might be useful. When dealing with

pure polarization states it is sometimes sufficient to denote the polarization state by the

ket | 〉 notation but it helps to be aware of the underlying mathematical description. It

is hoped that this appendix will serve as an introduction to basic polarization concepts,

as well as work as a consistency guide for the notation. We work exclusively with

expressions for monochromatic light, which is a good approximation for a lot of the

light fields that we encounter. We begin with a discussion of the transverse nature of

light fields.

Light may be treated as a transverse electro-magnetic wave in cartesian space whose

unit vectors are denoted by ex, ey and ez. The electric and magnetic fields oscillate in

a plane that is transverse to its propagation direction z. The direction of the wave is

characterized by its wave vector k = kez. The electric field of the wave is characterized

by the electric field vector E. The electric field vector can be decomposed into two

components that oscillate in different orthogonal directions x-y such that E = Ex + Ey
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and the components are written as:

Ex = E0x cos(kz − ωt)ex (A.1)

Ey = E0y cos(kz − ωt+ ε)ey (A.2)

where E0x,0y are the field amplitudes in the relevant directions. The angular frequency

of the wave is ω, and ε is the relative phase difference between the x and y components.

A positive value of ε means that Ey will lag behind Ex in amplitude.

Each electric field vector E is a unique combination of three values: E0x, E0y and

ε, and represents a polarization state. In general, the electric field vector does not

maintain a fixed plane-of-polarization (which is formed between the wave vector k, and

the electric field E). This means that the plane-of-polarization generally rotates about

the z-axis. Furthermore, the magnitude of the resultant electric field vector may change

as it rotates. Such electric field vectors are called elliptically polarized light. We now

describe some special cases of elliptical polarization.

A.1 Linear Polarization

The first set of special cases are encountered for electric field vectors that make a

constant plane with the wave vector. Such waves are called plane-polarized, or linearly

polarized. The simplest examples are when the electric field vector has only a single

component, (e.g. E = E0x cos(kz − ωt)ex). In this thesis we say that the electric field

vector with only the ex component is vertically polarized, and is denoted by |V 〉. When

the electric field vector has only the ey component it is horizontally polarized, |H〉. The

polarization vectors |H〉 and |V 〉, form a natural basis for polarization states, the HV

polarization basis.

In general, the electric field can have both x-y components and still be linearly

polarized. This occurs when ε takes integer multiples of π. If ε is equal to 0 or integer

multiples of 2π, the two components are said to be in phase. If, however, ε is equal to

odd-integer multiples of π, the two components are said to be 180◦ out of phase. For

example, when ε = π and ε = 2π, the electric field vector in the two cases may be
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expressed as:

E(ε = 2π) = (E0xex + E0yey) cos(kz − ωt), (A.3)

E(ε = π) = (E0xex − E0yey) cos(kz − ωt). (A.4)

In both cases the resultant electric field oscillation is only in a single plane.

A special case arises when the field amplitude in the x and y directions are equal.

Under the conditions for equation (A.3), we get a polarization plane that is half-way

between the x and y directions. We call this the +45◦ state, denoted by |+〉. Under the

conditions of equation (A.4), we get a polarization plane that is rotated by 90◦ to the

|+〉 state. We call this the −45◦ state denoted by |−〉. These two states are orthogonal

and also form a natural polarization basis, the ±45◦ basis. (Any set of orthogonal

polarization states can form a basis, but the two bases mentioned here are used most

often in this thesis).

A.2 Circular Polarization

The last pair of special cases we consider are for waves whose x and y components are

equal in magnitude, but have a different value for the relative phase difference ε. In the

first case, ε = π
2 + 2mπ where m = 0,±1, ... In the second case, ε = −π

2 + 2mπ. The

resultant electric field vectors are respectively expressed as:

ER = E0 (cos(kz − ωt)ex + sin(kz − ωt)ey) (A.5)

EL = E0 (cos(kz − ωt)ex − sin(kz − ωt)ey) (A.6)

The polarization state in equation (A.5)is referred to as right-circular |R〉, because

an observer looking at such an oncoming wave will see the vector ER rotating clockwise

with constant magnitude. The vector in equation (A.6) is called left-circular |L〉, because

a similar observer will see an anti-clockwise rotation of the vector EL. Together, they

form another basis, the L-R polarization basis.
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A.3 Jones Vector Notation

The first mathematical notation we will describe is relevant only for completely polarized

light. It assumes that in the time interval under consideration, the light has only one

polarization state. This is the Jones Vector Notation and utilizes the x-y components

of the electric field vectors directly.

The Jones vector is written as

E =

 E0xe
i(kz−ωt)

E0ye
i(kz−ωt+ε)

 . (A.7)

Hence, the states |H〉 and |V 〉 are written as:

|H〉 =

 E0xe
i(kz−ωt)

0

 = E0xe
i(kz−ωt)

 1

0

 (A.8)

|V 〉 =

 0

E0ye
i(kz−ωt+ε)

 = E0ye
i(kz−ωt+ε)

 0

1

 . (A.9)

For most cases in this thesis, it is sufficient to work with the normalized Jones

vectors, where the sum of the square of both components is 1. Hence, in normalized

vector notation the “special” states, |H〉,|V 〉, |+〉, |−〉,|L〉 and|R〉 states are written in

normalized notation as:

|H〉 =

 1

0

 , |V 〉 =

 0

1

 (A.10)

|R〉 =
1√
2

 1

i

 , |L〉 =
1√
2

 1

−i

 (A.11)

|+〉 =
1√
2

 1

1

 , |−〉 =
1√
2

 1

−1

 (A.12)

With normalized Jones vectors, it is possible to decompose a polarized state into com-
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ponents made up of states in another basis, e.g.:

|+〉 =
1√
2

 1

1

 =
1√
2

(|H〉+ |V 〉) (A.13)

A.4 Stokes Vector Notation

The Jones vector notation is very concise. However, it suffers the disadvantage that

it can only describe completely polarized light. The Stokes notation provides a vector

notation that describes all polarization states.

We begin with the four Stokes parameters first described by G. G. Stokes in 1852

[170]. The Stokes parameters S0 , S1 , S2 , S3 are related to the intensity of the incoming

light that has passed through 4 different filters. We may choose the first filter to be a

neutral density filter transmitting half of the incident light, while choosing the others to

be polarization filters transmitting the states |H〉, |R〉 and |+〉. The intensities measured

after these filters may be labeled as I0 , I1 , I2 and I3 respectively. The parameters are

then defined as

S0 = 2I0 (A.14)

S1 = 2I1 − 2I0 (A.15)

S2 = 2I2 − 2I0 (A.16)

S3 = 2I3 − 2I0 (A.17)

In this manner, the parameters S1,2,3 reveal the composition of the input polarization

state in terms of the three orthogonal bases.

We may also define the degree of polarization (DOP) as
√
S2

1 + S2
2 + S2

3/S0. In this

case pure polarization states have a DOP equal to 1. States whose DOP are less than

1 have an element of randomness in the polarization; the polarization state that is

completely random has a DOP of 0.

Recalling that the electric fields may be written as equations (A.1) and (A.2), we
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can re-write the Stokes parameters:

S0 = 〈E2
0x〉+ 〈E2

0y〉 (A.18)

S1 = 〈E2
0x〉 − 〈E2

0y〉 (A.19)

S2 = 〈2E0xE0y cos ε〉 (A.20)

S3 = 〈2E0xE0y sin ε〉 (A.21)

(A.22)

where we have placed the terms inside brackets to denote the time average. Hence, for

randomly polarized light the Stokes parameters are (〈E2
0x〉+ 〈E2

0y〉, 0, 0, 0) (the average

of the sine and cosine functions in equations (A.1) and (A.2) go to 0), satisfying the

requirement that the DOP is 0.

The Stokes parameters are sometimes arranged into a column vector, and treated as

a vector (called the Stokes vector). In the same way as the Jones vectors, we may work

with normalized Stokes vectors. Normalized Stokes vectors ~S are obtained by dividing

each of the Stokes parameters by the light intensity, such that ~S = (1, S1/S0, S2/S0, S3/S0).

For example, the normalized Stokes for randomly polarized light will be written as

(1,0,0,0).

Hence, we can work out the vector notation for our six “special” states:

|H〉 = (1, 1, 0, 0), |V 〉 = (1,−1, 0, 0) (A.23)

|R〉 = (1, 0, 0, 1), |L〉 = (1, 0, 0,−1) (A.24)

|+〉 = (1, 0, 1, 0), |−〉 = (1, 0,−1, 0) (A.25)

A reduced Stokes vector ~Sr = (S1, S2, S3)/Sm, identifies a point in the Poincare

sphere (Fig. A.1). In the Poincare sphere, completely polarized states lie on the surface

while randomly polarized light (DOP < 1) lies within the sphere. The completely

unpolarized state is denoted by the point in the center. In this context, the magnitude

of the reduced Stokes vector indicates the DOP. Also, for a Poincare sphere, we take

the convention that linearly-polarized states lie on the equator while the |R〉 and |L〉
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H V

−45o

R

L

+45o

linearly
polarized
states

Figure A.1: Poincare sphere representation of polarization states. The Poincare sphere is a
ball of unit radius. Pure polarization states lie on the sphere’s surface while mixed polarization
states reside within the sphere.

states lie at the poles.

In the language of spin-1
2 systems the reduced Stokes vector is the Pauli vector and

the Poincare sphere is called the Bloch sphere. Hence, the polarization of quantum

systems can also be described by a similar vector notation.

We have completed the description of polarization notations that are used in this the-

sis. We do not develop further the matrix algebra that comes with the Jones and Stokes

vector notations (which are capable of describing the behavior of optical elements), as

we do not use them very often in this thesis.
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Appendix B

Partially Polarizing Beam

Splitter (PPBS) Specification

To derive the intensity splitting ratio of the PPBS, we express the polarization states

using Jones vectors unless we are describing the tetrahedron vectors ~bj . The tetrahedron

(Stokes) vectors ~bj,k have the scalar product property

~bj · ~bk =
2
3

+
4
3
δjk. (B.1)

Recalling the parameters of the intensity splitting ratio of the PPBS x and y we see

that a general input polarization state
(
α
β

)
leads to the polarizations

(
xα
yβ

)
and

(
yα
xβ

)
in

the transmitted and reflected arms of the PPBS respectively. In our polarimeter, light

leaving the arms of the PPBS must be analyzed in two different polarization bases. Two

orthogonal vectors that form a basis may be expressed as
(

cos θ
eiφ sin θ

)
and

(−e−iφ sin θ
cos θ

)
. This

leads for example to the normalized light intensity falling on detector b1

I1/It =
∣∣∣αx cos θ + βye−iφ sin θ

∣∣∣2 . (B.2)

We choose a different measurement basis for detectors 3 and 4, for example light

reaching detector 3 is

I3/It =
∣∣∣αy cos θ′ + βxe−iφ′ sin θ′

∣∣∣2 . (B.3)
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Using the vector ~b1 as an example, equation (4.2) allows us to express the operator

B1 in terms of the measurement basis to fulfill equation (B.2):

〈B1〉 =
∣∣∣αx cos θ + βye−iφ sin θ

∣∣∣2 (B.4)

=
∣∣∣∣( x cos θ ye−iφ sin θ

)(
α

β

)∣∣∣∣2
(B.5)

The following choice of B1 fulfills this condition

B1 =
(
x cos θ
y sin θeiφ

)(
x cos θ y sin θe−iφ

)
. (B.6)

Since the tetrahedron can be oriented arbitrarily we choose for convenience to mea-

sure the 45◦ linear polarization basis (θ = π/4, φ = 0) in the transmitted arm and

the circular polarization basis (θ′ = π/4 φ′ = π/2) in the reflected arm. This reduces

the measurement operators to only the beamsplitting parameters x and y

B1

B2

 =
1
2

(
x2 ± xy

±xy y2

)
,

B3

B4

 =
1
2

(
y2 ∓ ixy

±ixy x2

)
,

which together with equation (4.2) allows us to express all tetrahedron vectors in terms

of x and y

~b1

~b2

 =



1

x2 − y2

±2xy

0


,
~b3

~b4

 =



1

y2 − x2

0

∓2xy


. (B.7)

From equation (B.1), we can write:

~b1 · ~b2 =
2
3

and ~b1 · ~b3 =
2
3
. (B.8)
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This allows us to obtain an equation in x alone

36x8 − 24x4 + 1 = 0. (B.9)

The last equation gives two solution sets; we choose the set where x2 = 1
2 + 1

2
√

3
⇒

y2 = 1
2 −

1
2
√

3
.



120

Appendix C

Spectral Broadening in type-II

non-collinear SPDC

In Spontaneous Parametric Down Conversion (SPDC), the generated photon pairs may

be collected into single mode fibers. The emission of the photon pairs is said to be

collinear if the emission direction is parallel to the pump beam. Otherwise, the emission

is said to be non-collinear. The degree of non-collinearity is determined by a walk-off

parameter Ξ, first introduced in equation (3.21). The parameter Ξ has a value of 0

for collinear emission and this value increases with the degree of non-collinearity (see

section 3.2.3).

For a fixed set of experimental parameters (e.g. pump power) the spectral bandwidth

of the collected downconversion photons will be different depending on the value of

Ξ. The spectral bandwidth of collected downconversion photons can be quantified by

its Full-Width at Half-Maximum (FWHM). In particular, the FWHM of the collected

bandwidth has its smallest value for the collinear case (Ξ = 0). Larger values of Ξ lead

to broader spectral bandwidths. This non-collinear spectral broadening is represented

graphically in figure 3.2.

One consequence of spectral broadening is that the bandwidth optimizing procedure

described in section 2.2.2 must be augmented by a correction factor. This factor can be

obtained by comparing the FWHMs of the non-collinear and collinear cases. In order

to do so, recall first that figure 3.2 is a plot of the longitudinal overlap Φz/l.
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In general, the longitudinal overlap is an integral

Φz

l
=

1∫
0

du e−Ξ2u2
cos(∆ϕu) (C.1)

In the collinear case, the longitudinal overlap is reduced to a sinc function as in equa-

tion (3.23). The expression for non-collinear cases is more involved, but is more easily

determined with the aid of numerical tools like Mathematica. For the SPDC generation

experiment of section 2.2.1, the non-collinearity of the setup is Ξ = 0.933. Hence, the

expression for the longitudinal overlap after numerical integration is:

(
Φz

l

)
Ξ=0.933

= 0.536e0.287(∆ϕ)2√π

× (Erf(0.933− i0.536∆ϕ) + Erf(0.933 + i0.536∆ϕ)) (C.2)

It is now possible to find the value of ∆ϕ at which the longitudinal overlap reaches

0.5. This is done by using the Mathematica function FindRoot. For example, to solve

the collinear case, the complete Mathematica argument is:

FindRoot[sinc(∆ϕ) ==
√

0.5∆ϕ, {∆ϕ, 1}]

This yields ∆ϕ = 1.39156. Similarly, for the case of Ξ = 0.933, the overlap function

reaches 0.5 when ∆ϕ = 1.578. The spectral bandwidth is about 13% larger in the non-

collinear case. Hence, the expected spectral bandwidth in section 2.2.2 is not 3.4 nm

but approximately 4 nm.
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Abbreviations

APD Avalanche Photodiode

BB84 QKD protocol designed by Bennett and Brassard in 1984

BBO β-Barium Borate

CC Crystal Compensator

CHSH Bell inequality designed by Clauser, Horne, Shimony and Holt

CPM Critical Phase Matching

cps counts per second

cw continuous-wave

D1,2 Detectors

E91 QKD protocol designed by Artur Ekert in 1991

EC Error Correction

EPR Einstein, Podolsky and Rosen

FPC Fiber Polarization Control

FWHM Full-Width at Half-Maximum

FWM Four Wave Mixing

He-Ne Helium-Neon

HWP Half Wave Plate

IF Interference Filters

Kwiat95 Polarization-entangled photon pair source designed by Paul Kwiat in 1995

LD Laser Diode

LHV Local Hidden Variables
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LV Local Variables

NLV Non-local Variables

PA Privacy Amplification

PBS Polarizing Beam Splitter

PC Personal Computer

PH Pin Hole

PL Pump light

PPBS Partially Polarizing Beam Splitter

QBER Quantum Bit Error Rate

QKD Quantum Key Distribution

QM Quantum Mechanics

QPM Quasi-phase Matching

QWP Quarter Wave Plate

RT Receiving Telescope

SMF Single Mode Fiber

SPDC Spontaneous Parametric Down Conversion

ST Sending Telescope

TU Timing Unit

WP Wave Plate
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