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Abstract

Progress Towards Realizing Atom-Light Interface with Blue-Detuned Tweezers
Array

by

Ng Boon Long

Doctor of Philosophy in Centre For Quantum Technologies

National University of Singapore

In this work, we focus on exploring the potential of realizing a light-atom quantum
interface using a closed optical transition that involves a magnetic-sensitive ground
state. Through coherent state manipulation within the ground state manifold, we
have the capability to couple our qubits selectively to the specific optical channels.
This has opened up the possibility to implement some protocols in an optically-
trapped 87Rb atom that are initially developed for solid-state qubits such as schemes
for the generation of time-bin atom-photon entanglement [1] and the sequential
generation of an entangled photonic string [2, 3].

First, we experimentally study the performance of dynamical decoupling on
preserving the coherence of the ground state qubit. We use the two magnetic-
sensitive 52S1/2 Zeeman levels as qubit states, motivated by the possibility to couple
one of the states to the 52P3/2 excited state via a closed optical transition. We
manage to extend the coherence time to close to 2 ms with periodic dynamical
decoupling sequence, and further improvement is limited by pulse imperfection.
We apply the Carr-Purcell-Meiboom-Gill sequence to our qubit system, which has
been demonstrated to be able to mitigate pulse imperfections. With up to N = 50
π-pulses, we manage to achieve a coherence time of 6.8 ms as compared to T ∗

2 of
38(3)µs obtained from Ramsey experiment.

Next, we report on the observation and analysis of the resonance fluorescence
emitted from the closed optical transition mentioned above. For driving strength
above the saturation regime, we observe a triplet structure in the emission spectrum
which is the well-known Mollow triplet. Under off-resonant excitation, the temporal
cross-correlation between photons originating from different sidebands indicates that
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there is a preferred time-ordering of the emitted photons. The cascaded generation
of time-correlated fluorescence photons with a tunable frequency difference will be
useful for quantum optics experiments and quantum communication protocols.

In the last part, we explore the possibility of implementing a reconfigurable
blue-detuned optical dipole trap using a spatial light modulator. We manage
to characterize the intensity profile of the bottle beam trap in a test setup. By
manipulating spatial phase profile of the trap laser, we demonstrate the scaling up to
multiple dipole traps in such a configuration. We have successfully incorporated this
bottle beam trap into our current setup to confine a single atom. To characterize
the performance of this trap, several measurements have been done including the
lifetime and coherence of the single atom in the blue-detuned trap. This work is
still in progress and more effort is needed to improve the reliability of the trap.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Over the past 30 years, the rapid development in quantum information science
has been driven by many discoveries and a deeper understanding of the underlying
principle. A fascinating application of quantum information science is quantum
computation, where it harnesses the principles of quantum mechanics and leverages
the counterintuitive properties of quantum systems to solve complex computational
problems that are intractable for classical computers [4].

Quantum bits, or qubits, are the fundamental unit of information in quantum
computing. Unlike classical bits, which can only exist in logical states of 0 or 1,
qubits can be in coherent superpositions of both states. Entanglement is another
unique feature of a quantum system where a quantum correlation with no classical
analogue exists between several entangled qubits. The state of these entangled qubits
can only be described as an inseparable whole. Utilizing these properties, people
manage to realize schemes and algorithms that could speed up the computational
process for some very complex problems. For example, Shor’s algorithm [5] is
proposed to lower the computational complexity of factorization of large numbers,
which could result in vulnerability in the widely-used RSA encryption scheme. The
real-life applications of quantum computation are not that far-fetched nowadays as
several proof-of-principle experiments have been demonstrated [6–10].

Researchers are actively exploring viable candidates for quantum computing,
such as neutral atoms [11, 12], cavity QED [13, 14], superconducting circuits [15,
16], trapped ions [17–19], semiconductor quantum dots [20–22], etc. Each platform
presents unique advantages and challenges, but none has emerged as the definitive
solution. There are two important considerations in realizing a practical quantum
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CHAPTER 1. INTRODUCTION

computer: local computational power and connectivity between different quantum
systems. To achieve efficient quantum information processing locally, the quantum
system must allow qubit state preparation, manipulation, and readout with high
fidelity. While the long coherence time of the qubit relative to the gate operation
time is necessary to avoid information loss along the computation process, the
scalability of the quantum system is also of paramount importance since the number
of functional qubits is essential for quantum computers to outperform their classical
counterparts [23].

When a quantum system fulfills the above criteria, one needs to start thinking
about its connectivity with other quantum systems in order to transmit quantum
information over long distances. Optical photons are an excellent choice for this
purpose as the quantum information encoded in the photonic states can be preserved
for a long time due to the low interaction probability with the environment [24]. As
such, the quantum system in consideration needs to have some sort of capability to
convert its own information into photons and vice versa. This implies that efficient
coherent interaction between the system and the photon is essential. These two
considerations lead to the idea of a quantum network where the atom-like systems
act as the stationary node of the network for information processing and storage
while the photons as the flying qubit in charge of information transfer [25, 26].

With all these considerations, we focus on exploring the feasibility of an optically
confined single neutral 87Rb atom to be the building block of such a quantum
computer. A single two-level neutral atom is a relatively simple system to study and
can be manipulated individually with high precision. With various trapping and
cooling techniques, the atoms can be isolated almost entirely from the environment,
which results in a long coherence time of the qubit [27]. Instead of placing the atom
in a high finesse cavity to achieve strong atom-light coupling [28, 29], our approach
involves a tightly focused light field onto the optically confined atom through a pair
of aspheric lenses. The reason for such a choice is due to the simplicity of a lens
system in terms of setting up. Besides, in the case of a quantum network formed
by atom-cavity systems, it is a resource demanding task to make sure each of the
nodes in the network is operating at the same resonant frequency.

In combination with various beam splitting controls and techniques, the optical
dipole trap can be easily scaled up to realize an optical tweezer array that can hold a

2



CHAPTER 1. INTRODUCTION

large number of single neutral atoms in arbitrary 2D and 3D geometry [30–32]. The
knowledge and experience in controlling single atoms to perform single qubit gate
operation can be applied to the case of a tweezer array as high fidelity individual
site addressing with negligible crosstalk between neighboring qubits can be realized
with the same beam splitting controls and techniques. Combined with the strong
long-range interactions provided by Rydberg states [33, 34], two- and three-qubit
entangling gates have been successfully demonstrated [35–37], paving the way to
a practical quantum computer. Recently, neutral-atom arrays that contain two
different species of neutral atoms [38] and two different isotopes of Rubidium [39]
have been demonstrated. This shows the robustness of the optical tweezer approach.

Early works in our group focus on how the temporal profile of the photons
affects the interaction probability with an atom [40]. Subsequent efforts successfully
demonstrated a 36.6(3)% extinction of a weak coherent field by a single atom trapped
in free space [41]. In this thesis, we divert away from the path of investigating the
atom-light interaction strength and start to look into some aspects of our qubit
system that might matter in the implementation of a practical quantum interface.

Motivated by the choice of a closed optical transition in the previous experiments
to achieve high interaction strength, we are curious about the coherence performance
of the magnetically sensitive ground state qubit that is coupled to the closed optical
transition. Through the application of a dynamical decoupling sequence to the qubit,
we manage to preserve the coherence for a long enough time relative to the gate
operation time.

While we have a good understanding of the atom-light interaction, the char-
acteristic of the emission from the system remains unexplored. The frequency
spectrum of the atomic fluorescence exhibits a triplet structure when the system is
saturated by the incoming excitation. With off-resonant excitation, the preferred
time-ordering of the photons emitted from different sidebands could be used as a
heralded narrowband single photon source that might find applications in quantum
information processing.

In the end, we start to consider the scaling up of our current system to increase
the number of usable qubits. Inspired by the possibility of incorporating Rydberg
excitation into our future experiment, we develop a dipole trap system based on a
blue-detuned laser. With a bottle beam trap configuration, we can construct a trap

3



CHAPTER 1. INTRODUCTION

that will retain its trapping power for the atom in its ground state and Rydberg
state simultaneously. This can avoid the situation where the red-detuned dipole
trap needs to be turned off during the experiment time window when a Rydberg
excitation occurs.

Thesis outline

This thesis is organized as follows:

• Chapter 2 describes the experiment setup and some key techniques for trapping
the single 87Rb atoms. We also include some characterization measurements
such as atom lifetime and trap frequency measurement.

• Chapter 3 presents the theoretical description and experimental effort on the
dynamical decoupling sequence. We explore different types of sequences and
characterize their effectiveness in preserving coherence. An improvement over
two orders of magnitude in the coherence time is observed by applying the
optimal pulse sequence.

• Chapter 4 reports our observation of the Mollow triplet in the fluorescence
spectrum from an optically confined single atom. The single photon nature
of the fluorescence is illustrated in the second-order correlation measurement
of the atomic emission. We show the preferred time-ordering of the photons
originating from opposite sidebands under off-resonant excitation.

• Chapter 5 covers the working principle and characterization of blue-detuned
bottle beam trap.

• Chapter 6 concludes our findings and discusses the future outlook of the
experiment.

4



CHAPTER 2. EXPERIMENTAL SETUP AND CONTROL OF SINGLE ATOM

Chapter 2

Experimental setup and control of
single atom

This chapter introduces the experimental setup and some key techniques for
trapping single 87Rb atoms. We briefly describe each key component: the aspheric
lens pair, the laser system, and the far-off-resonant optical dipole trap (FORT). Next,
we show the manipulation of the optically confined single atoms, which involves
state detection and optical pumping to targeted states.

2.1 Overview
The schematic of our experimental setup is shown in Fig. 2.1. We trapped

a single 87Rb atom with FORT operating at a wavelength of 851 nm by strongly
focusing the laser using an aspheric lens. In order to load atoms into the FORT,
we first need to cool the atoms to a temperature below the trap depth of FORT,
which is around kB×3 mK in our setup. We first use a magneto-optical-trap (MOT)
to form a cloud of atoms that is sufficiently cold and dense to be captured by the
dipole trap. The atomic fluorescence scattered by the single atom is collected with
the same pair of aspheric lenses, which then will be coupled into a single-mode fiber
and subsequently detected with an avalanche photodetector.

2.2 Aspheric lens pair
A pair of high numerical aperture (NA) aspheric lenses in confocal configuration

lies at the heart of our optical setup. Besides using these lenses to form the FORT,
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CHAPTER 2. EXPERIMENTAL SETUP AND CONTROL OF SINGLE ATOM

Figure 2.1: Setup for probing light-atom interaction in free space. A single 87Rb atom
is cooled and trapped at the focus of the far-off-resonance dipole trap (FORT) between
two high NA lenses (L1, L2) within an ultra-high vacuum (UHV) chamber. Through
the same lenses, we can strongly focus the probe beam onto the atom and collect the
fluorescence emitted by the atom. The collected atomic fluorescence is coupled into
a single-mode fiber and subsequently detected by avalanche photodetectors (APDs).
IF: interference filter centered at 780 nm, QWP: quarter-wave plate, BS: beam
splitter, PBS: polarizing beam splitter, D1/2: avalanche photodetectors (APDs), B:
magnetic field.

laser light can be tightly focused onto the single atom to realize strong atom-light
coupling. The reason for us to choose aspheric lenses is their compactness and
cheaper pricing compared to multi-element microscope objectives. We use aspheric
lenses custom-made by Asphericon with a NA of 0.75 and an effective focal length of
5.95 mm. The lenses are coated with an anti-reflection coating with less than 0.5%
reflection at 700-1400nm. For other technical details such as the mechanical mount
and characterization of the lenses, one can refer to Wilson’s PhD thesis [42].

2.3 Laser system
Lasers are utilized throughout the experiment for many different purposes such

as trapping, cooling, and exciting the atom. Several lasers are used in the setup
including (1) a 780 nm laser for cooling and probing, (2) a 795 nm laser for repumping,
(3) another 780 nm laser for clock state optical pumping, and (4) an 851 nm laser
for atom trapping. For the first two lasers, all the technical details such as the
laser configuration and spectroscopy for frequency locking have been covered in a
previous thesis [42] and no change has been made to them. While the other two
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lasers are the new addition to the setup, we will briefly describe their purpose and
configuration in the following section.

Clock state optical pumping laser

di raction grating

adjustment screw
piezo

diode laser inside
a collimation tube

Figure 2.2: A photo of the home-built external cavity diode laser setup inside an
acrylic box. The red colour line is drawn as a visual aid to indicate the beam path
from the diode laser reflected by the diffraction grating. The two adjustment screws
help to adjust the alignment of the grating in both vertical and horizontal directions
in order to form a cavity. The piezo that is attached to the grating mount provides
a change in the cavity length which turns into a change in laser output frequency.

This laser is a home-built external cavity diode laser (ECDL) in a Littrow
configuration [43, 44] with a laser diode from Thorlabs (L785P090). As shown
in Fig. 2.2, the ECDL is enclosed in a box with a temperature control system.
Together with the diode laser, the reflective diffraction grating forms an external
cavity that narrows down the laser linewidth by yielding feedback to the laser diode
and amplifying a single frequency mode. The coarse wavelength tuning (>100 GHz)
is achieved by tuning the temperature through a Peltier element and adjusting the
diffraction angle of the grating via an adjustment screw. For fine-tuning(<1 GHz),
the external cavity length can be changed by the piezo that is attached to the grating
mount which results in a change of the cavity resonance. With this configuration,
the ECDL can achieve a laser linewidth of less than 1 MHz. With an operating
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current of 60 mA, the output optical power of this ECDL is 30 mW which is more
than enough for our daily operation.

EOM

to setup

AOM

Feedback

PD

PBS

MixerHWP
+90MHz

laser
diode

20MHz
RF signal

Rb GC

PID

HWP
PBS

AOM

-170MHz

Figure 2.3: Setup of the clock state optical pumping laser. The combination of a half-
wave plate (HWP) and a polarizing beam-splitter (PBS) distributes the laser output
into two paths. In the first path, an acousto-optic modulator (AOM) increases the
laser frequency by 90 MHz before going into the modulation transfer spectroscopy
(MTS) port. In MTS, the phase of the pump beam (top path) is modulated by an
electro-optic modulator (EOM); the modulation is transferred to the probe (bottom
path), and subsequently detected by the photodetector (PD). This signal is mixed
with the RF signal to generate error signals. A proportional–integral–derivative
(PID) controller turns this signal into a feedback to the ECDL piezo to lock the laser
to a target frequency. By locking it to the 52S1/2, F = 2 → 52P3/2, F

′ = 3 transition,
the output frequency of the laser is now 90 MHz below this transition. It is further
decreased by 170 MHz using another AOM such that the light is now resonant with
F = 2 → F ′ = 2 transition.

We need this separate laser because the main 780 nm laser in the system does not
have excess laser power to spare for clock state optical pumping purposes. As shown
in Fig. 2.3, the laser frequency is first increased by 90 MHz via an acousto-optic
modulator (AOM) from Gooch & Housego (3080-122). Using a modulation transfer
spectroscopy (MTS), the laser is frequency-locked to the 87Rb D2 line, specifically
the 52S1/2, F = 2 → 52P3/2, F

′ = 3 transition. The laser frequency is now 90 MHz
below the F = 2 → F ′ = 3 transition. It is further decreased by 170 MHz by
another AOM in a double pass configuration such that the light resonates with the
F = 2 → F ′ = 2 transition for optical pumping purposes. The exact frequency is
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fine-tuned depending on the experimental setting such as trap depth and magnetic
field that caused frequency shifts.

Dipole trap laser

For our red-detuned far-off-resonant optical dipole trap (FORT), we are using a
continuous-wave (CW) Ti:Sapphire laser (SolsTiS) from M Squared where we set
the lasing wavelength at 851 nm. This Ti:Sapphire laser is pumped by a 532 nm
laser (Verdi V-10). With pump power of 10 W, the laser has an average output
power of 1.5 W depending on the emission wavelength. The advantages of using this
laser is the stability in terms of power and the single-mode operation. To further
stabilize and adjust the trapping potential, we lock the power of this laser with a
PID control loop. By doing so, not only that we can maintain a consistent trap
potential over a long period of time, but the trap depth can also be tuned reliably
according to the experimental sequences.

For the experiment that is described in Chapter 5, the blue-detuned dipole trap
is generated using the same Ti:Sapphire laser with the emission wavelength tuned
to 740 nm. So we use a distributed feedback laser (Eagleyard EYP-0852-00150) to
form the red-detuned FORT to replace the original trap. This new FORT has the
same power stabilization setup as the previous one.

2.4 Far-off-resonant optical dipole trap
A far-off-resonant optical dipole trap (FORT) is formed by strongly focusing

down a far-detuned laser beam in order to create a large enough intensity gradient
around the focus. The interaction between the light field and the atomic dipole
moment leads to the presence of AC Stark shifts in the atomic energy levels. This
interaction is attractive if the light field is red-detuned with respect to the atomic
transition and vice versa. As such, a tightly focused red-detuned laser creates a
potential well that pulls the atom towards the region of maximal intensity at the
focal spot.

The dipole potential has a depth that is approximately proportional to I/∆
whereas the scattering rate of the trap light by the atom scales with I/∆2. Here, I
is the intensity of the trap light, and ∆ is the detuning from the atomic transition.
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In order to reduce the influence of the dipole trap on the atomic states and atom
temperature, a large detuning is preferred to lower the scattering rate of the trap
light by the atom. On the other hand, higher optical power is needed to obtain a
certain trap depth with larger detuning due to the I/∆ scaling. In our experiment,
the aspheric lenses are designed to perform at the diffraction limit for light with a
wavelength of 780 nm. We choose to use 851 nm as the dipole trap wavelength such
that the trap beam can still be focused down near to diffraction limit and have a
low scattering rate due to the large detuning (60 nm).

2.4.1 Experimental Implementation

The output of the Ti:Sapphire laser is sent into an AOM and subsequently
coupled into a polarization-maintaining single-mode fiber for a clean spatial and
polarization mode. At the other end of the fiber, we use a triplet fiber collimator
from Thorlabs to obtain a collimated beam with a beam waist of 2.7 mm. Since the
laser power is directly related to the trap potential experienced by the atom, it is
crucial for the laser power to stay constant over time. Part of the laser is sent onto a
photodiode for power stabilization purposes, where a control loop is controlling the
radio frequency (RF) power supplied to the AOM based on the photodiode readout.
After that, the beam is focused down through the same aspheric lens pairs for strong
atom-light coupling to a waist of approximately 1.1µm.

The typical operating power of the dipole laser is around 12 mW, which cor-
responds to a trap depth of U0 ≃ kB × 2.8 mK. We use a FORT that is linearly
polarized, where the vector light shift vanishes and the qubit coherence can be
preserved for a longer time [27]. It is also essential for efficient polarization gradient
cooling [45]. However, the presence of tensor light shift in linearly polarized FORT
greatly affects the atom-light coupling [46]. In daily operation, we have to lower the
trap depth to around kB × 1.2 mK and apply a strong bias magnetic field along the
quantization axis to retain a strong and clean atom-light coupling.

Thanks to the collisional blockade mechanism [47], a dipole trap that is strongly
focused can only hold a single atom at one time. When two atoms are loaded into
the trap, both of them will be rejected out of the trap due to light-assisted collisions,
which result in zero atom within the dipole trap. By spatially overlapping the MOT
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Figure 2.4: Fluorescence signal of single atoms in an optical dipole trap with the
MOT always turned on. (Left) Typical telegraph signals of single atom fluorescence
with a lower background level and a higher level indicate the presence of one atom in
the trap. (Right) Histogram of the fluorescence by collecting data over 10 minutes.

and the FORT, a single 87Rb atom can be loaded into the FORT from the atomic
cloud. The fluorescence scattering by the atom is collected by the aspheric lens
pair and subsequently coupled into single-mode fibers. We detect the collected
fluorescence using single photon detectors (Perkin Elmer SPCM-AQR-15). Figure
2.4 shows the typical telegraph signal that indicates the sub-Poissonian loading of
single atoms with either zero or one atom inside the trap.

This fluorescence signal that has two discrete levels to indicate the presence of
an atom in the trap. We can use a threshold count rate that acts as a trigger to
begin the experimental sequence. In our setup, we use a pattern generator device
with a counter to check the fluorescence count rate and implement the experimental
sequence condition on the count rate. It takes around 30 ms of fluorescence collection
to have sufficient information to distinguish if there is an atom in the trap reliably.

2.4.2 Trap Characterizations

Using a focused Gaussian laser beam, the spatial distribution of the FORT
potential with trap depth U0 can be described in cylindrical coordinates as

U(ρ, z) = −U0
1

1 + (z/zR)2 exp
[
− 2ρ2

w2
D(1 + (z/zR)2)

]
, (2.1)
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Figure 2.5: Survival probability of the atom in the FORT when the trap is modulated
at different frequencies. Parametric resonances lead to the dips in the survival
probability. The parametric resonances are r1 = 2ωz/2π, r2 = 2ωr/4π and r3 =
2ωr/2π, which give us ωz/2π=15(1) kHz and ωρ/2π=115(2) kHz.

where wD is the beam waist and zR = πw2
D/λ denotes the Rayleigh range of the

laser beam. For a cold atom with a thermal energy kBT much lower than the trap
depth U0, it will mostly reside near the bottom of the potential. In this case, the
trap potential can be approximated as a harmonic potential:

U(ρ, z) ≈ −U0[1 − 2( ρ

wD
)2 − ( z

zR
)2]. (2.2)

and the trap frequencies are given by ωr = (4U0/mw
2
D)1/2 and ωz = (2U0/mz

2
R)1/2

in the radial and axial direction, respectively.
In order to measure the trap frequencies, we heat up the atom parametrically

by modulating the dipole trap power. This is done via modulation of the RF input
power to the trap laser AOM. By varying the modulation frequency ωm, we observe
a degradation of the atom survival probability in the trap when the modulation
frequency hits one of the parametric resonances,

ωn = 2ωρ/z
n

, n = 1, 2, 3, . . . (2.3)
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From the trap frequency measurement shown in Fig. 2.5, we observe three
parametric resonances. We infer an axial trap frequency of ωz/2π=15(1) kHz from
resonance r1. For radial direction, r2 and r3 are the resonances when n equal to 1 and
2, respectively. From this, we infer a radial trap frequency of ωρ/2π=115(2) kHz.

2.4.3 Atom lifetime in the trap

The lifetime of the trapped single atom is an important measure of the optical
dipole trap performance. A longer lifetime allows us to execute more experimental
cycles on the atom without the need to constantly wait for an atom to load into the
trap.

We can infer the lifetime of the single atoms in the trap from the survival rate
of the atom after a certain period. When the collected fluorescence exceeds the
threshold, a single atom is loaded into the trap and we will switch off the MOT by
turning off the quadrupole field. This will help to prevent atom loss due to collision
with other atoms. After waiting for a certain duration, we will check if the atom
is still present in the trap by checking the integrated fluorescence counts for 30 ms.
This measurement is repeated for different duration to get the survival rate of the
atom.

We perform the experiment under two different conditions: with and without the
presence of cooling light during the waiting period. In the case where the cooling
light is absent, the lifetime is mainly limited by collisions of the trapped atom with
the background gas. While for the case where the trapped atom is under continuous
illumination of the cooling light, the spontaneous scattering of the cooling light will
heat up the atom and contribute to a shorter lifetime in the trap. The result of the
single atom lifetime under two different conditions is shown in Fig. 2.6. We fit the
experimental data to an exponential decay and obtain the 1/e lifetime of 2.77(4) s
for the single atom in the FORT without the presence of cooling light. In the case
of continuous illumination by the cooling light, the lifetime is reduced to 1.61(4) s
due to heating effect from the photon scattering. In any case, these lifetimes are
sufficient for our purposes as they are a few orders of magnitudes higher than the
timescale needed for most of the experimental sequences.
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Figure 2.6: Trapping lifetime of single atoms in an optical dipole trap with (red) and
without (blue) the continuous illumination of the cooling light. The solid lines are
exponential fits that result in 1/e lifetime of 1.61(4) s (red) and 2.77(4) s (blue) when
cooling light is turned on and off, respectively. The error bars reflect the standard
error of binomial statistics.

2.5 Manipulation of single atoms
In this section, we will describe the experimental sequences that we implement

routinely in our setup. First, we will explain the procedures to prepare the trapped
atom in the desired state and how we measure it.

2.5.1 Experimental sequences

We use a field-programmable gate array (FPGA) based pattern generator to aid
us in realizing the sequences in all the experiments throughout this thesis. This
pattern generator has multiple outputs that send out electrical logic signals according
to the sequences that we programmed. These signals are used to turn on and off
devices in the setup such as AOMs and coils that generate quadrupole and bias
magnetic fields.

Fig. 2.7 outlines the logic flow of the experimental sequence we carry out routinely.
At the initial stage, we turn on the MOT (quadrupole field, cooling, and repump
laser) and the dipole laser to wait for a single atom to load into the trap. Due to the
sub-Poissonian loading as shown in Fig. 2.4, the sudden increase in photon scattered
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check if
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Figure 2.7: Flow chart of the experimental sequence.

from the cooling light indicates the presence of a single atom in the dipole trap.
We can set a threshold in the sequence to decide if it will continue with the MOT
phase or jump to the main experimental sequence. The pattern generator has a
built-in counter that will integrate the photodetection events for a certain duration,
and check if the counts exceed the threshold value. The typical duration that we
use in the experiments is around 20 ms to 40 ms so that we have enough fidelity to
distinguish the presence of an atom within the trap. If the counts do not exceed the
threshold, this checking procedure will be repeated until the threshold is reached.

When the fluorescence counter exceeds the threshold, we will switch off the
quadrupole field to prevent further loading of atoms into the trap. Next, we perform
polarization gradient cooling (PGC) by lowering the power in the MOT beams for
10 ms. This helps to cool the atom down to a temperature of 14.7(2)µK. A bias
magnetic field of 1.44 mT is applied along the FORT laser propagation direction
to lift the degeneracy of the Zeeman states. According to the requirements of
different experiments, the atom is optically pumped into the target state by an
optical pumping beam.
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Now, we can start applying different steps and operations to the atom. Depending
on the goal of the experiment, we can program the sequence to fulfill our needs
such as transmission measurement or coherence measurement. The details of the
sequence will be described in the corresponding section in the later part of this
thesis. At the end of the sequences, we will turn on the cooling laser to check if the
atom is still in the trap by comparing the fluorescence counts with the set threshold.
The sequence will return to the atom preparation stage (PGC stage) if the atom
survives, otherwise it will return to the MOT phase.

This deterministic way of atom loading and performing the experimental sequence
is more efficient in terms of data collection compared to the method that repeats the
measurement sequence and post-process to isolate the data that are collected when
the atom is present. We run a small test to quantify the efficiency of this method.
To simulate the situation where the experimental sequence does not condition on the
presence of the atom in the trap, we turn on the MOT and dipole laser for 500 ms,
then we switch off the MOT for 50 ms to represent the time window where the state
preparation and measurement are happening. After that, we turn on the MOT beam
for 30 ms to check if there is atom within the trap by looking at the fluorescence
from the atom. Then, the sequence will return back to MOT phase for 500 ms. If
the atom is present, we consider that as one useful atombin. For a collection time of
10 minutes, the experimental sequence that condition on the presence of the atom
results in 11 times more atombins compared to the sequence that does not.

2.5.2 Atomic state detection

The 87Rb 52S1/2 ground state consists of two hyperfine states with total angular
momentum F = 1 and F = 2, respectively. The method to distinguish these two
hyperfine states reliably is crucial in identifying the atomic superposition state
involved in the coherence measurement presented in the next chapter. Here, we
follow the nondestructive state detection scheme illustrated in [48, 49] to verify the
hyperfine state of the atom. This scheme requires shining light onto the atom to
excite the transition from 52S1/2, F = 2 to 52P3/2, F

′ = 3 and subsequently detect
the atomic fluorescence. Atoms that are initially in the F = 2 (bright) state will
continuously scatter light, whereas for atoms in the F = 1 (dark) state, there is no
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coupling to the light field and no light is being scattered. As such, the presence or
absence of fluorescence above a given threshold reveals the hyperfine state that the
atom is in.
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Figure 2.8: Histogram for photon detection probability for atoms prepared in a
bright state (red) and a dark state (blue), respectively. The state readout fidelity is
97.4(2) % for a set threshold of 3 detected photons.

The detection performance is characterized by first preparing the atom in either
the bright or dark state, and then turn on the state detection light for 600µs. This
pulse duration is chosen such that the atom heating is minimal while the state
detection fidelity is high to accurately identify the hyperfine state. We repeat this
procedure and analyze the photon distribution of the collected fluorescence for cases
where the atom is either initialized in the bright or dark state. Fig. 2.8 shows the
distribution of the detected photon number for 2800 experimental cycles with two
distinguishable peaks. When the atom is prepared in the bright state, the detectors
record a mean photon number nb = 11.7(1) in the 600µs collection window. For
an atom in the dark state, we expect the atom to scatter almost no photons due
to the hyperfine splitting of 6.8 GHz. However, we find that in the experiment, the
detectors occasionally register one or two events during the detection window (mean
photon number nd = 0.36(1)) due to the APD dark counts. From the histogram,
we can choose a threshold photon number nth that maximizes the discrimination
between the two hyperfine states.
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In order to characterize the state detection performance, we define the state
readout fidelity as

F = 1 − ξb + ξd
2 , (2.4)

where ξb(d) is the probabilities of a state assignment error for atoms prepared in
the bright (dark) state given a certain nth. For the data shown in Fig. 2.8, the ξb
and ξd is 4.4(4)% and 0.8(2) % respectively, using nth = 3. With this, we achieve a
detection fidelity of F = 97.4(2) %. The high-fidelity single-shot readout potentially
enables quantum state manipulation without further averaging.

2.5.3 Optical pumping

After the initial trapping and PGC stage, the atomic state is spread across
all the Zeeman sublevels in both the hyperfine states of 52S1/2 ground state. We
therefore perform optical pumping to ensure that the atom is initialized in the
desired state. Throughout this thesis, we mainly work with the closed transition
52S1/2, F = 2,mF = −2 → 52P3/2, F

′ = 3,mF = −3. As such, we want to
prepare the atom in the F = 2,mF = −2 state most of the time. With the
exception in Section 3.2.3 where we measure the coherence of the clock state
transition, the atom needs to be prepared in the magnetically insensitive Zeeman
state, 52S1/2, F = 2,mF = 0. In both cases, we apply dark-state optical pumping to
minimize the photon scattering such that excessive heating of the atom is avoided.

To initialize the atom in the F = 2,mF = −2 state, we send in two σ− polarized
light beams along the optical axis. These two beams are on resonance with the
52S1/2, F = 2 → 52P3/2, F

′ = 2 and the 52S1/2, F = 1 → 52P1/2, F
′ = 2 transitions,

respectively. The first beam (pump) drives the atom towards the target state, while
the second beam (repump) brings the atom back to the F = 2 state when the atom
decays to the F = 1 state and decouples from the pump beam. After multiple
excitations, the atom is now in the desired F = 2,mF = −2 state which is decoupled
from the pumping light. As such, the atom will not scatter photons anymore once it
falls into this “dark state”. In our experiment, the atom takes around 1 to 2 ms to
reach the “dark state” through this optical pumping process.

For the preparation of the atom in the F = 2,mF = 0 state, we change the
configuration of the pump by sending in the beam perpendicularly to the optical
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axis. This light is linearly polarized parallel to the optical axis in order to drive
the π-transition from 52S1/2, F = 2 to 52P3/2, F

′ = 2. When the atom decays to
the mF = 0 state, it will be decoupled from the pump light because the transition
52S1/2, F = 2,mF = 0 → 52P3/2, F

′ = 2,mF ′ = 0 is forbidden due to the selection
rules for atomic dipole transitions. Together with the same repump light, we can
prepare the atom in the desired clock state without excessive photon scattering.

Figure 2.9: Optical pumping scheme to initialize the atom into the 52S1/2, F =
2,mF = −2 state. When the atom reaches the target state, it is decoupled from
the pumping field as no allowed σ− transition exists. The circularly σ− polarized
780 nm (795 nm) pumping (repumping) field is indicated by the red (blue) arrows.

Figure 2.10: Optical pumping scheme to initialize the atom in the magnetically
insensitive 52S1/2, F = 2,mF = 0 state. Due to the selection rule for dipole transition,
the atom in the target state will be decoupled from the pumping field. The linearly
π polarized 780 nm pumping field is indicated by the red arrows while the blue
arrows show the same repumping field as in Fig. 2.9.
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Chapter 3

Dynamically decoupled single neu-
tral atom

This chapter describes the experimental implementation of dynamical decoupling
schemes on a single 87Rb atom in a tightly focused far off-resonant optical dipole trap
(FORT). First, we give a brief overview of dynamical decoupling as a tool to maintain
the coherence of a quantum system for a longer period of time. Next, we characterize
the atomic coherence by driving Rabi oscillations and perform Ramsey and spin-echo
measurements. This result also serves as a reference to show the effectiveness of
different dynamical decoupling sequences in mitigating decoherence. The subsequent
section will focus on applying a few dynamical decoupling sequences onto the atom
and determining the coherence time. We also observe a strong correlation between
the motional states of the atom and the qubit coherence after the sequences are
applied, which can be used as a measurement basis to resolve trapping parameters
such as trap frequency. Finally, we also present a measurement to determine the
optimal pulse sequence for our system by mapping out the coherence with 5 π-pulses
at the different durations between pulses. A majority of the content in this chapter
has been published in [50].

3.1 Introduction
Quantum computation which utilizes quantum bits to process and store informa-

tion holds the potential to tackle some of the most complex computational problems
more effectively than classical computers [51, 52]. However, one restriction that hin-
ders the realization of this potential is the undesired coupling between the quantum
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system and the external environment which causes the loss of information [53]. This
degradation of the quantum state is called decoherence, and it limits the number of
gate operations that can be applied to the qubit, as well as the duration the quantum
information can be preserved [54, 55]. In order to suppress the decoherence process,
one of the most effective approaches is dynamical decoupling (DD). This method is
accomplished by applying a series of π pulses to the system, which overcomes the
decoherence by inverting the interaction between the system and the environment [56,
57]. The DD scheme was first established in the nuclear magnetic resonance (NMR)
community. One of the more well-known implementations is the Hahn echo sequence
proposed by Erwin Hahn [58]. He showed that flipping a qubit with a π pulse is
equivalent to a change of sign of the system-environment interaction Hamiltonian.
This in turn corresponds to a time reversal of the perturbation, effectively decoupling
the system from the noise-inducing environment. Since then, many DD schemes with
different pulse sequences such as Carr-Purcell (CP) and Carr-Purcell-Meiboom-Gill
(CPMG) have been introduced to address various sources of errors.

3.1.1 Dynamical decoupling

Consider a system that consists of a qubit that is coupled to an external envi-
ronment which imparts a random phase onto the qubit. The qubit can be described
as a superposition state

|Ψ(t)⟩ = c↓(t) |↓⟩ + c↑(t) |↑⟩ , (3.1)

where |↓⟩ and |↑⟩ are the basis states of the qubit. The complex probability
amplitudes c↓ and c↑ are normalized such that |c↓|2 + |c↑|2 = 1. Undesirable coupling
to the environment will result in the loss of state information that is encoded in
c↓ and c↑. In general, one may classify decoherence processes into two classes:
longitudinal energy relaxation and transverse dephasing. The first process affects
the probability amplitudes of |Ψ⟩ and causes the qubit state to evolve along the
meridians of the Bloch sphere. This results in a flip of the qubit state (“bit-flip
error”). The longitudinal relaxation process can be characterized by an energy
relaxation time, T1 with reference to NMR literature [59].

As compared to energy relaxation, transverse dephasing randomizes the relative
phase between the basis states. This causes the qubit state to move along the
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latitude lines of the Bloch sphere. When we average the data collected from
multiple experimental runs, the phase randomization results in decoherence with a
characteristic time Tψ. Taking these two decoherence processes into account, the
coherence time of the qubit system can be shown to be (T ∗

2 )−1 = (2T1)−1 + T−1
ψ . In

reality, T ∗
2 of the qubit can be measured through the Ramsey decay. We can reverse

the transverse dephasing with some coherence preserving protocols and achieve a
longer coherence time T2 of the qubit.

However, the longitudinal relaxation process is generally much slower than the
transverse dephasing in our system. Therefore, we can write down a Hamiltonian
that models decoherence in our system as follow:

H = ℏ
2 [ω0 + ξ(t)]σ̂Z , (3.2)

where ω0 is the unperturbed energy splitting of the qubit, and ξ is a classical random
variable describing the variation of the qubit energy splitting due to the environment.

Given the relatively longer energy relaxation time T1, we are interested in the
decoherence process of a qubit that is in the coherent superposition of its ground
and excited state. Consider a state at time t = 0, |Ψ0⟩ that is initially oriented along
the y-axis of the Bloch sphere, where |Ψ0⟩ = 1√

2(|↑⟩ + i |↓⟩). |Ψ0⟩ can be prepared
by initializing the qubit in |↑⟩ state and apply a π/2-pulse around the x-axis to
rotate the state to y-axis. After that, we let the qubit evolve freely for a time t. The
resulting state under the effect of Eqn. 3.2 is given by

|Ψ(t)⟩ = 1√
2

(
e−iω0t/2e− i

2

∫ t

0 ξ(t
′)dt′ |↓⟩ + ieiω0t/2e

i
2

∫ t

0 ξ(t
′)dt′ |↑⟩

)
. (3.3)

From Eqn. 3.3, we can see that accumulation of random phase between |↑⟩ and
|↓⟩ happens due to the contribution of the ξ(t) term. This decoherence process of
the qubit can be visualized in the Bloch sphere picture as shown in Fig. 3.1. Ideally,
when ξ is zero, the initial state that lies on the y-axis will evolve to |↓⟩ if we apply
another π/2-pulse around the x-axis. However, the state now starts to rotate about
the z-axis with a rotation speed that depends on ξ(t). The additional phase makes
the state fail to reach |↓⟩ completely even though another π/2-pulse is applied.

Instead of applying π/2-pulse, we let the state freely evolve and apply a π pulse
around the x-axis (denoted as πx) at t = τ/2 which corresponds to a rotation of
180◦ with respect to the x-axis. This will result in a time reversal of the phase
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accumulation and “refocus” the qubit back to its desired state at t = τ . This is the
basic idea of the Hahn spin echo, a pioneering strategy for tackling decoherence in
the NMR community.

(a) (b) (c)

(d) (e)

Figure 3.1: Visualization of Hahn spin echo in Bloch sphere. (a) Initialize the qubit
in |↑⟩ state. (b) A π/2-pulse around the x-axis is applied to bring the state to the
y-axis. (c) Let the qubit evolves freely for time t. The state starts to spread across
the x− y plane with a speed that depends on ξ(t). (d) A π pulse around the x-axis
is applied to flip the state to the opposite side of the Bloch sphere. (e) After another
time t, the state is refocused back onto the y-axis.

However, this idea will only work under the assumption that the changes in ξ

are slow compared to the free-precession time of the state. As such, this refocusing
effect will also decay as a function of the free-precession time, where the decoherence
effect cannot be reversed due to fluctuation of ξ. To bypass this limitation, Carr
and Purcell proposed an extension of the Hahn spin echo sequence which is known
as the Carr-Purcell (CP) sequence [56]. In this sequence, the single π pulse is being
replaced by a series of equidistant π pulses, which effectively partition the changes
in ξ into multiple time windows and reverse their effect accordingly with each π

pulse.
Theoretically, one can add more π pulses in order to make sure the pulse intervals

are below the correlation time of the fluctuations. In reality, the number of pulses
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is limited by the accumulation of pulse errors which will eventually destroy the
coherence of the system instead of preserving it. Meiboom and Gill [57] introduce
Carr–Purcell–Meiboom–Gill (CPMG) sequence which is a variation of the CP
sequence where the π pulses are applied around the y-axis (denoted as πy) is
introduced to mitigate the pulse errors.

Later on, Uhrig proposed the Uhrig dynamical decoupling (UDD) sequence
which has non-equidistant pulse spacings, where its j-th π pulse located at δjτ with
δj = sin2[πj/(2N + 2)] [60]. Here, τ is the total free evolution time and N is the
total number of π pulses. We will examine the efficiency of various DD strategies in
the subsequent sections.

3.1.2 Filter theory

The effect of various decoupling pulse sequences on the decoherence rate of
the target system can be understood analytically using filter theory [60–62]. As
shown in the previous section, the DD sequence modulates the phase accumulation
of the qubit temporally by partitioning the free evolution time into smaller time
bins. While the slow fluctuation of ξ(t) can be corrected by the applied π-pulses,
the fluctuation that occurs at a higher frequency will cause the qubit to dephase
irreversibly. As such, it is helpful to view this problem in the frequency domain
where the DD sequence can be treated as a spectral filter to separate the system
from the environmental noise, depending on the various frequency components of
ξ(t). Here we use a formulation to describe the decoherence of a qubit system as
presented in [60, 63, 64].

Due to transverse dephasing, the qubit state accumulates random phases over
time due to its coupling with the external environment. This is the dominant
factor that decreases the state coherence W (τ) after a duration τ . For a state |Ψ0⟩
initialized along the y-axis of the Bloch sphere, the state coherence W (τ) is given by

W (τ) = |⟨σy(τ)⟩| = e−χ(τ), (3.4)

where the angled brackets represent a quantum-mechanical expectation value and
the overline represents a statistical average.

To qualitatively understand the efficiency of multipulse sequences on dephasing
suppression, we focus on the change in the state coherence integral χ(τ). For a state
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initialized in the equatorial plane of the Bloch sphere, we can write

χ(τ) = 2
π
τ 2
∫ ∞

0
S(ω)gN(ω, τ)dω, (3.5)

where gN(ω, τ) can be viewed as a frequency-domain filter function of the random
phases for a refocusing sequence consisting of N π-pulses, and S(ω) is the power
spectral density of environmental noise in the semiclassical picture. This quantity
describes the overlap between the filter function of the decoupling sequence and the
power spectral density of environmental noise.

In order to obtain the power spectral density of environmental noise, we apply a
Fourier transform to the time-dependent noise term ξ(t):

S(ω) =
∫ ∞

−∞
e−iωt′ ⟨ξ(t+ t′)ξ(t′)⟩ dt′. (3.6)

This power spectral density represents the ensemble-averaged phase accumulated
between the basis states.

The decoupling sequence that contains a series of π-pulses modulates the phase
accumulation of the qubit in the time domain. By applying Fourier transform to
the temporal modulation, we can treat the DD sequence as a frequency-domain
filter function, gN(ω, τ) that can decouple the system from the environmental noise
depending on the shape of the filter. Depending on the distribution of N π-pulses
within the free-induction time τ , gN(ω, τ) can be written as

gN(ω, τ) = 1
(ωτ)2

∣∣∣1 + (−1)1+Neiωτ + 2
N∑
j=1

(−1)jeiωδjτ cos (ωτπ/2)
∣∣∣2, (3.7)

where δj ∈ [0, 1] is the normalized position of the centre of the jth π-pulse in the
free-induction time window and τπ is the length of the π-pulses.

Figure 3.2 illustrates the filter properties of function gN(ω, τ) for two common
DD sequences that will be implemented in the system. For a fixed free evolution
time τ , the filter function’s peak frequency shifts higher as N increases, leading to a
reduction of integrated low-frequency noise. The filter function gets narrower and is
centered closer to ω = Nπ/τ as N increases.

With the knowledge of the spectral density of noise coming from the environment,
one can utilize the filter treatment to calculate or construct DD sequences that are
optimized to preserve the coherence of the system.
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Figure 3.2: (a): Schematic representation of Periodic and Uhrig DD sequences.
The qubit state is initialized in the |↑⟩ state. We then bring the qubit state to
the superposition state (|↑⟩ + i |↓⟩)/

√
2 with a π/2-pulse and let it evolve freely

for a period τ , with τ being partitioned into small windows using π-pulses. PDD
partitions τ into uniform periods. While UDD has its j-th π-pulse locating at
δjτ with δj = sin2[πj/(2N + 2)]. (b): Filter function gN(ω, τ) for different pulse
sequences with τ = 1 ms. Increasing the number N of π-pulses shifts the peak to
higher frequencies.

3.2 Experimental realization
In this section, we will describe the experimental setup and sequences that are

important in investigating the effect of the DD sequence on preserving the coherence
of our system. The complete experimental setup and the relevant atomic transitions
are shown in Fig. 3.3.

The atom preparation is similar to the sequence described in Section 2.5.1 where a
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| ⟩
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Figure 3.3: (a): Setup for implementing dynamical decoupling sequence on
a single atom qubit. APD: avalanche photodetectors, UHV: ultra-high vac-
uum chamber, IF: interference filter centered at 780 nm, λ/2: half-wave plate,
λ/4: quarter-wave plate, PBS: polarizing beam splitter, BS: beam splitter, B: mag-
netic field. (b): Energy level scheme. Stretched state (s) |F = 2, mF = −2⟩ ≡ |↑⟩,
|F = 1, mF = −1⟩ ≡ |↓⟩ and clock state (c) |F = 2, mF = 0⟩, |F = 1, mF = 0⟩ are
used as the qubit states. The |↑⟩ state can be coupled to 5P 2

3/2 |F = 3, mF = −3⟩
via a closed optical transition.

single 87Rb atom is trapped in the FORT and we apply 10 ms of polarization gradient
cooling to cool the atom down to a temperature of 14.7(2)µK. Then, a bias magnetic
field is applied to lift the degeneracy in the Zeeman states, such that the atom can
be optically pumped into the target state. In this chapter, we use the two magnetic-
sensitive 52S1/2 Zeeman levels, |F = 2, mF = −2⟩ ≡ |↑⟩ and |F = 1, mF = −1⟩ ≡
|↓⟩ as qubit states, motivated by the possibility to couple |F = 2, mF = −2⟩ to
52P3/2 the excited state |F ′ = 3, m′

F = −3⟩ via a closed optical transition, opening
a possible path to protocols originally developed for solid-state quantum systems to
be implemented in an atomic system. This includes schemes for the generation of
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time-bin atom-photon entanglement [1] and the sequential generation of an entangled
photonic string [2, 3], which are crucial resources for quantum computations.

Atoms in the |↑⟩ state are coupled to |↓⟩ by applying a microwave field resonant
to this transition using a pair of log-periodic antennae. We then use this field
to drive Rabi oscillations and perform various dynamical decoupling sequences to
characterize the atomic coherence [27, 65–68]. After that, we need to check in which
state the atom is in by utilizing a lossless state-selective detection method described
in Section 2.5.2.

After performing the state detection, we will check if the atom is still present
in the trap to decide if we will continue the experiment sequence from the cooling
stage, or if we need to load a new atom into the trap. For each data point, we repeat
this sequence over many experimental cycles until we gather sufficient data to infer
the atomic state.

3.2.1 Microwave Generation and Characterization

To drive the magnetic dipole transition between the two hyperfine ground states,
52S1/2, F = 2 and 52S1/2, F = 1, we need to generate a microwave field with a
frequency equal to the hyperfine splitting, which in our case is around 6.8 GHz
for 87Rb atom. We send the RF signal into a pair of log-periodic antennae (Kent
Electronics WA5VJB PCB Log-Periodic 2-11 GHz) that are pointing towards the
trapped single atom.

For an atom that is initially in the |↑⟩ state, the probability of it being in the
|↓⟩ state after a microwave pulse of duration t is given by

P↓ = Ω2

Ω2 + ∆2 sin2
(√

Ω2 + ∆2 t

2

)
, (3.8)

where Ω is the Rabi frequency and ∆ = ω − ω0 is the detuning of the microwave
field from the resonant frequency. With appropriate choice of Ω and t, the highest
chance of the atom being in the |↓⟩ state is located at the frequency where ∆ = 0
according to Eqn. 3.8.

As such, to locate the resonant frequency ω0 of the transition experimentally,
we prepare the atom into the |↑⟩ state and turn on the microwave field for 5µs.
After that, we turn on the state detection light and the atomic state can be inferred
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Figure 3.4: Spectroscopy measurement to locate the resonance of |↑⟩ ↔ |↓⟩ transition.
We send a microwave pulse of 5µs to excite the atom and measure the state of
the atom. The blue solid line is a fit to 1-P↓ while also taking into account
the imperfection in preparing the qubit in |↑⟩ state. A resonant frequency of
6.804582 GHz can be extracted from the fit.

from the amount of photons scattered by the atom. We repeat the measurement at
different microwave frequencies, but keep the RF power and pulse duration constant.
The result is shown in Fig. 3.4. We can extract the resonant frequency from the fit
to 1-P↓. With this, we can tune the frequency of the microwave field to match the
resonant frequency of the targeted transition.

3.2.2 Rabi Oscillation

Now with the resonant frequency known, there is yet another key ingredient to
implement various dynamical decoupling sequences: the pulse area. For example,
the π-pulse mentioned in the previous section is an excitation pulse with a pulse area
of π. The pulse area can be obtained from the product of Rabi frequency, Ω, and the
pulse duration. To understand the influence of pulse area, we can look at Eqn. 3.8
in the case of zero detuning. For a π-pulse (Ωtπ = π), the atom that is initially in
the |↑⟩ state will end up in the |↓⟩ state. While for a π/2-pulse (Ωtπ/2 = π/2), the
atom will be in a superposition of the |↑⟩ and |↓⟩ states. In the Bloch sphere picture,
the application of a π-pulse or a π/2-pulse corresponds to a rotation of π or π/2
along any axis on the equatorial plane that is defined by the pulse itself.
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Figure 3.5: Rabi oscillation between |↑⟩ and |↓⟩ states. The state detection mea-
surement determines if the atom is in which hyperfine level of the 52S1/2 manifold.
The solid line is a fit to an exponentially decaying cosine function to extract the
Rabi frequency, Ωmw = 2π × 76.78(3) kHz.

Since the pulse area is given by Ωt, we need to measure the Rabi frequency of
our microwave driving field to infer the pulse duration needed for a π pulse. In order
to do that, we use the microwave field to drive Rabi oscillations between the |↑⟩ and
|↓⟩ states. We measure the atomic state after turning on the microwave field for a
different durations. The result is shown in Fig. 3.5.

The Rabi oscillation in Fig. 3.5 exhibits a Rabi frequency of Ωmw = 2π ×
76.78(3) kHz with a visibility of 0.837(7). By assuming perfect state preparation and
no other source of error, a maximum visibility Vmax of 0.948(4) can be achieved as the
maximum visibility is related to state detection fidelity through Vmax = 1 − 2(1 −F ).
The Rabi oscillation shows little decay within the first 60µs, implying that the
reduced visibility is most likely due to imperfections in the state preparation process
rather than the driving process. As shown in Fig. 3.5, the probability of the atom
in 52S1/2, F = 2 level does not go near to zero, implying that there is a non-zero
probability that the atom is in other Zeeman states that do not couple to the
microwave field. The reduced visibility of the Rabi oscillation could be explained
by the occupation of other states due to imperfect state preparation. From the
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detection fidelity, the population of the atom prepared in |↑⟩ state is inferred to be
88.9(9) %.

With the measured Rabi frequency, we can infer the pulse duration required for
a π-pulse is 6.51µs. Since the precision of the pulse is bounded by the smallest step
size of the pattern generator which is 10 ns, it affects the pulse area of the π-pulse
by less than 0.15 % and is negligible for most situations. We also calibrate the Rabi
frequency regularly to eliminate the drift due to RF power drift and the mechanical
movement of the antennae.

3.2.3 Coherence Characterization

To determine the dephasing time of our qubit system, we first carry out a Ramsey
experiment where we apply two π/2-pulses with a free evolution time τ in between
the two pulses to the atoms in the |↑⟩ state. We repeat the experiment for different
τ and fit an exponential decay to the Ramsey contrast, which results in dephasing
time T ∗

2 = 38(3)µs (Fig. 3.6, red). This dephasing time serves as a baseline for us
to quantify the effect of various DD sequences in terms of protecting the coherence
of the system.

Next, we apply standard spin echo sequence [58, 59], which add an extra π-pulse
in the middle of the free evolution window τ as compared to the Ramsey experiment.
As mentioned in the previous section, this sequence helps to refocus the atomic state
and reverse the inhomogeneous dephasing during the free evolution time, resulting
in a much slower decay of the Ramsey contrast. With this sequence, we obtain a
coherence time T2 = 480(21)µs for the stretched state of our qubit by fitting the
data to a decaying Gaussian (Fig. 3.6, blue). Here, the coherence time is defined as
the 1/e decay time of the spin-echo visibility.

Instead of characterizing the coherence of the magnetically sensitive Zeeman
states, researchers usually focus on the magnetically insensitive Zeeman states
because these states are immune to noise from fluctuating magnetic fields. In order
to compare the coherence in this qubit with other systems [66, 69, 70], we perform a
spin echo on the transition between magnetically insensitive Zeeman states, 5S1/2,
|F = 1, mF = 0⟩ ↔ |F = 2, mF = 0⟩ of our qubits as most of the other experiments
were also probing the clock state coherence. Using the same procedure, we find
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Figure 3.6: Ramsey and spin-echo when the atom is initially prepared in |↑⟩ (s)
or |F = 2, mF = 0⟩ (c). We fit a decaying exponential to the Ramsey signal and
a decaying Gaussian to the spin-echo signal to extract their respective 1/e time
constants; T ∗

2,s = 38(3)µs, T2,s = 480(21)µs, and T2,c = 9.5(6) ms.

the coherence time of the magnetically insensitive qubit to be T2,c = 9.5(6) ms,
which is 20 times longer compared to the stretched state coherence (Fig. 3.6, black).
This observation is consistent with previous experiments with the superposition of
magnetically insensitive Zeeman states in a red detuned dipole trap, which has a
typical coherence time of 10 ms. It has been shown that the coherence time can be
improved to tens of milliseconds by reducing the trap depth [66, 70]. The coherence
time on the order of hundreds of milliseconds has also been demonstrated by reducing
the differential light shift with a magic-intensity trapping technique [71].

We look into different aspects that could be the dominant factor that limits
the coherence time of the magnetically sensitive states. Initially, we suspect that
the fluctuations in dipole beam intensity give rise to the differential light shift
that limits our coherence time in the magnetically sensitive states. To confirm
our hypothesis, the coherence time for magnetically sensitive states is calculated
analytically following [66]. For the inhomogeneous dephasing caused by an atom
temperature-dependent differential light shift, we expect a dephasing time of around
1.4 ms from the relation T ∗

2 = 0.97(2U0)/(δkBTatom) [66]. In our setup, the trap
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depth is U0 = kB × 0.88 mK with a maximum differential light shift δ ≃ 2π× 13 kHz
for our 851-nm FORT. An irreversible dephasing dominated by intensity fluctuations
of the dipole laser gives T2 = 1/(δσA) ≃ 20 ms with the measured Allan deviation
σA = 0.06 % of dipole power, following the definition in [66]. As such, we conclude
that the coherence time for magnetically sensitive states is not limited by our dipole
trap.

For 87Rb, the stretched state (5S1/2, |F = 1, mF = −1⟩ ↔ |F = 2, mF = −2⟩)
qubit’s sensitivity to the external magnetic field is 21 GHz/T at low fields. Due
to the high magnetic sensitivity of the qubit states, fluctuations in magnetic fields
can be the dominant factor in the dephasing mechanism. Therefore, we can find
ways to isolate the magnetic noise in order to achieve a longer coherence time for
our qubit. Despite not using the clock states, we manage to achieve a high ratio of
state manipulation speed and preserved coherence, T2,s/tπ ≈ 74 which is sufficient
for most applications.

3.3 Periodic DD sequence
In the previous section, we showed that the spin-echo technique, as the simplest

example of a DD sequence with one single π-pulse, can already improve the coherence
time. To test the effect of DD sequences with more π-pulses, we first apply the
periodic DD (PDD) sequence to our system. PDD sequence is the simplest pulsed
DD scheme with all the π-pulses distributed evenly in the free evolution time window.
Using the same experimental procedure, the coherence evolution of the qubit system
under the PDD sequence is shown in Fig. 3.7.

Initially, we expect a monotonic decaying profile for the coherence evolution
that is similar to the spin-echo sequence result shown in Fig. 3.6. However, we
observe that the decaying envelopes contain collapses which always occur at the
same partition period τ/(N + 1) for various N from Fig. 3.7. The partition period
here refers to the free evolution time window between each π-pulse. For the three
sets of data, the first dip always occurs at around τdip/(N + 1) = 40µs while the
second one appears at τdip/(N + 1) = 130µs. This feature can be explained by the
atomic motion in the dipole trap as the dips occur at frequencies that correspond to
the trap frequency. A similar effect has also been observed in previous studies [72,
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Figure 3.7: Coherence evolution of the stretched state qubit under Periodic DD
(PDD) for a different number of π-pulses. N is chosen to be N = 3 (top), N = 5
(middle), and N = 13 (bottom) π-pulses. Solid lines are numerical simulations
using our heuristic noise model. Error bars represent the standard error of binomial
statistics accumulated from 300 repeated sequences.

73] and we will discuss this further in the next section.
Due to the recurring dips, the qubit coherence evolution under PDD does not fit

well with a smooth decaying Gaussian. As such, the coherence time extracted from
the fit is not very meaningful in this context. To compare various decaying envelopes,
we define the coherence time T2 as the time for the state coherence to decay by a
factor of 1/e. This is consistent with the usual definition in a bare two-level system.
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Figure 3.8: Coherence time T2 as a function of the number N of π-pulses. The solid
line shows the simulation result for a spectrum S(ω) ∝ 1/ωα with α = 1.73.

Of course, we also take into account the fact that the qubit is not perfectly prepared
in the desired initial state. Using this definition, Fig. 3.8 shows the coherence time
as a function of the number of π-pulses.

As mentioned in Section 3.1.2, the DD sequence can be treated as a noise filter
function where the function’s peak frequency shifts higher as N increases for a fixed
free evolution time τ . From the result in Fig. 3.8, the coherence time increases with
the number N of π-pulses in a sequence. This suggests that the noise follows a 1/ωα

spectrum with α > 0. Besides, the dependence of T2 on N suggests that T2 can
potentially be further improved by using additional refocusing pulses. A similar
trend has been observed in other qubit systems, including single silicon-vacancy
centers [74], single nitrogen-vacancy centers [75], and single 43Ca+ ion system [76].

In our system, we are currently limited to pulse sequences with N ≤ 20 as the
contrast of the coherence evolution drops as N increases. From Fig. 3.7, we can
see that the probability of atom in F=2 state can reach 95% at very short τ for 3
π-pulses PDD (top). This probability drops to 90% when N increases to 13 (bottom).
This limitation is mainly due to pulse imperfections including errors in the flip angles
and finite pulse width introducing dephasing to the qubit, as discussed in [77]. We
attribute the main source of pulse imperfections in our system to the inexact π-pulse
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timing. By driving the qubit continuously with various numbers N of π-pulses, we
estimate the uncertainty of the π-pulse timing to be 1 % from the Rabi contrast.
This small deviation from the exact π rotation in the Bloch sphere gives a cumulative
error in the multipulse DD sequences when the number of π-pulses becomes too
large. Of course, more robust pulse sequences with pulse phases that are shifted
appropriately can be applied to mitigate pulse errors. Nonetheless, this preliminary
refocusing strategy here has offered us an insight into the dephasing mechanism of a
magnetic-sensitive qubit state.

To further confirm that the occurrence of the dips is due to the atomic motion
in the dipole trap, we simulate χ(τ) under a simple noise model consisting of a 1/ωα

noise and a Gaussian centered at the axial trap frequency ω0 = 2π × 12.0 kHz. The
noise spectral density is given by

S(ω) = S0/ω
α + S1e

−(ω−ω0)2/(2σ2). (3.9)

In this noise model, the 1/ωα spectrum represents the noise floor produced by
ambient magnetic field fluctuations and power fluctuations of the dipole light field,
while the Gaussian spectrum represents the differential light shift experienced by
the atom when it moves in an inhomogenous dipole light field.

Since we extract the coherence time in Fig. 3.8 by ignoring the recurring dips,
it is an ideal set of data for us to estimate the value of S0 and α. Using only the
first term in Eqn. 3.9, the simulation manages to produce a solid line that matches
well with the experimental data for a 1/ωα noise with α=1.73. Next, we calculate
the coherence evolution for different numbers N of π-pulses using the full model
including the second term in Eqn. 3.9. As shown in Fig. 3.7, our heuristic noise
model is able to predict the recurring features quite well.

3.3.1 Noise Spectroscopy

In the field of magnetometry, dynamical decoupling is also implemented in order
to reconstruct the spectrum of the noises that are coupled to the system [78, 79].
We manipulate the band-pass filter properties of gN(ω, τ) function to characterize
the noise spectrum [80, 81]. Knowing that the filter function behaves as periodic
sinc-shaped peaks at frequency ωl ≃ (2l + 1)ω with ω ≃ Nπ/τ , we probe the noise
spectral density by varying N and τ .
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Figure 3.9: Noise spectroscopy with DD adapted from atomic magnetometry. Red
circle: noise spectral density reconstructed with experimental data. The recurring
peaks are the feature of the filter function gN (ω). Blue dashed line: noise spectrum
of our heuristic noise model. Blue solid line: reconstructed noise spectral density in
simulation. This is obtained by modulating the exact noise spectrum (blue dashed
line) with the filter function of the chosen DD sequence. Trap depth is set to be
0.88 mK (top), 1.04 mK (middle), and 1.41 mK (bottom), respectively. The trap
frequencies used in the simulation are 12.0 kHz, 15.2 kHz, and 18.0 kHz, respectively.

Fig. 3.9 shows the noise spectra probed experimentally when the dipole beam
power is being varied. This measurement will give us more information about the
atomic motion in different trap depths as the trap depth is proportional to the
dipole laser power. The reconstruction of noise spectral density S(ω) follows [80,
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81]. The frequency range is determined by the choice of free evolution time τ . We
observe the maximum noise density around 10.4 kHz, 16.7 kHz, and 20.8 kHz for
dipole trap with trap depth of 0.88 mK, 1.04 mK, and 1.41 mK, respectively. As the
dipole beam power increases, the maximum noise density shifts to higher frequencies
as expected. The noise peaking at the axial trap frequency can be explained by
the polarization gradients of a tightly focused FORT following [82]. Despite the
fact that we use a linearly polarized FORT for which the vector shift vanishes, the
tight focusing of FORT can still result in a spatially varying vector light shift for
the qubit states around the focal plane. As the trap frequency along axial direction
ωz =

√
2U0/(mz2

R) increases along with the trap depth U0, the light shift noise due
to oscillatory atomic motion shifts to higher frequencies. This is also in line with
the observation in Fig. 3.9.

Compared to our heuristic noise model, we observe some recurring peaks in the
noise spectra at lower frequencies. After careful inspection, we figure out that these
peaks are the feature of the filter function gN(ω), determined by the DD sequence.
We numerically construct the noise spectral density modulated by the filter function
with our heuristic noise model and find that the simulation predicts the recurring
features well. By utilizing the higher harmonics of the filter function, the trap
frequency can be resolved with higher precision. We can use this as a basis for the
precision measurement of trap parameters.

Another observation is that the width of the Gaussian noise in our model is much
narrower than the noise spectral density modulated with a filter function. This is
because of the fact that the bandwidth of the filter function is inversely proportional
to N . In our experiment, the number of refocusing pulses N used is less than 20,
resulting in a bandwidth that is comparable to the width of the Gaussian noise
which we would like to resolve. Indeed, it is possible to improve the resolution of
the noise spectral density by increasing the number of π-pulses N but there is a
trade-off for increasing noise due to accumulated pulse errors.

Aside from the peak features, we notice that the background noise floor does not
vary with dipole beam power. We measure the intensity fluctuation of the dipole
beam and find that it only corresponds to noise spectral density of 0.5 Hz/

√
Hz.

This suggests that the background could be mainly due to stray magnetic field
fluctuation.
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3.4 Uhrig DD sequence
To compare the effectiveness of different DD sequences on preserving the qubit

coherence, we also apply UDD protocols [60] to suppress dephasing in our qubit
system. It also has been shown analytically that the UDD sequence could provide
strong suppression of phase accumulation when the noise environment contains a
high-frequency component and a sharp high-frequency cutoff. The pulse sequence
and the filter function gN(ω, τ) for UDD are shown in Fig. 3.2. A feature of UDD
is the lack of higher harmonics but more sidelobes in its filter function. With the
same number of π-pulses N , UDD produces a pass band with a larger width peaking
at a lower frequency compared to the PDD sequence. This implies that the UDD
sequence might perform worse under a broadband noise spectrum.
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Figure 3.10: Implementing Uhrig dynamic decoupling (UDD). Top: UDD with
3 π-pulses, T2 = 926(16)µs. Bottom: UDD with 5 π-pulses, T2 = 1285(25)µs.
Solid lines are numerical simulations using our heuristic noise model with the same
parameters implemented in Section 3.3. Error bars represent standard error of
binomial statistics accumulated from 300 repeated sequences

By applying the UDD sequence with the same procedure, the coherence evolution
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of a single atom qubit is shown in Fig. 3.10. Again, the simulation with our heuristic
noise model can reproduce the wiggles qualitatively in the |↑⟩ population as a
function of the total free evolution time τ . However, the simulation falls short in
predicting the magnitude of the wiggles. This mismatch between the simulation and
the result might be due to the assumption of instantaneous π-pulse in calculating
the filter function gN(ω, τ).

To avoid any complications caused by the wiggles, we opt for the same definition
of the coherence time as in the previous section where the state coherence decays by
a factor of 1/e. We observe a coherence time of 926(16)µs and 1285(25)µs for N =
3 and N = 5 π-pulses, respectively. Compared with the coherence time obtained
using PDD sequence with the same number of π-pulses (764(14)µs for N = 3 and
1060(60)µs for N=5), we observe an improvement of 21.2 % on the coherence time,
consistent for both N = 3 and N = 5. In our system, the performance of both PDD
and UDD sequences are comparable to each other because in general, a DD sequence
requires a rather distinctive noise spectrum to outperform its counterpart.

3.5 DD benchmarking
Theoretically speaking we can try to work out the sequence that fits our system

the most given that we have information about the noise spectrum. For practical
purposes, it might be easier to experimentally figure out the best sequence for a
particular system with limited knowledge about the associated noise. For most
applications in quantum information processing, we aim to preserve coherence
maximally for a given duration. In the following section, we will demonstrate an
optimization protocol to determine the sequence that works best for our qubit.

As shown in Fig. 3.11 (a), we are using a sequence with 5 π-pulses. We set
a fixed free evolution time τ to mimic the situation where the coherence need
to be maintained for a certain duration in between qubit operations. In this
characterization, we choose a fixed free evolution time of τ = 900µs and τ = 1500µs.
Now, the optimization is still too complicated to realize experimentally due to the
5 degrees of freedom arising from the π-pulse locations within the free evolution
time window. So we impose a reflection symmetry to the pulse sequence such that
it will symmetry with respect to the middle π-pulse. With these two constraints, we
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Figure 3.11: Optimization with five π-pulses for a fixed free evolution time τ = 900µs
and τ = 1500µs. (a): Schematic representation of the DD sequence, satisfying
τ0 + τ1 + τ2 = 0.5τ . (b-d): Population of F = 2 state at the end of refocusing. For
both τ = 900µs and τ = 1500µs, the maximum fidelity is not given by standard
DD sequences such as UDD (τ1/τ =18.3 %, τ2/τ =25.0 %) or PDD (τ1/τ =16.7 %,
τ2/τ =16.7 %), the maximal point locates at τ1/τ =19.2 %, τ2/τ =19.6 % in the
simulation.
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successfully reduce the number of free parameters from 6 to 2.
To better understand the effect of the noise on the qubit coherence, we numerically

calculate the dynamics of the qubit state using our heuristic noise model introduced
in previous sections, following Eqn. 3.5. From Fig. 3.11, we find a good agreement
between the observed coherence and the model for the same parameters used in
the previous section. The maximum coherence is obtained with the protocol that
follows ( τ0

τ
, τ1
τ
, τ2
τ

) = (11.2 %, 19.2 %, 19.6 %). This optimal sequence matches well
with the Carr-Purcell (CP) sequence, which is widely used in the field of NMR and
is constructed with the first and last precession periods being half of the duration of
the interpulse period, e.g. ( τ0

τ
, τ1
τ
, τ2
τ

) = (10 %, 20 %, 20 %) [83].

3.6 Carr-Purcell-Meiboom-Gill sequence
Inspired by the results obtained from the optimization in the previous section,

we probe the coherence time T2 of our system with the CP sequence. As shown in
Fig. 3.12, we observe a coherence time of 1017(38)µs and 1274(42)µs for N = 3 and
N = 5 π-pulses, respectively. In terms of coherence time, there is an improvement
of 33.1 %, and 20.2 % for N = 3 and N = 5 π-pulses respectively compared to the
case of using the PDD protocol. However, the improvement in coherence time halts
at larger N . Especially, the coherence time decreases after N ≥ 15, due to the drop
in initial signal contrast caused by the accumulation of pulse imperfections.

To address this problem, we apply the Carr-Purcell-Meiboom-Gill (CPMG)
sequence to our qubit system, which has been demonstrated to be able to mitigate
pulse imperfections for the preservation of a quantum state [57]. In terms of pulse
location, the CPMG scheme is the same as the CP scheme. The only difference is
that the refocusing microwave pulse is 90◦ phase shifted from the π/2-pulse which
prepares the superposition state. For example, we start with the |↑⟩ state in the
Bloch sphere and then apply a π/2 rotation about the x-axis to it. Now, the state
will lie along the y-axis. For the CP sequence, the subsequent π-pulses will rotate
the state about the x-axis. In contrast, in the CPMG scheme, the 90◦ phase shift
means that the subsequent π-pulses will rotate the state about the y-axis. In the
ideal case where the state experiences no dephasing, it will stay on the y-axis, and
the rotation about the y-axis will not change the state. At the end of this sequence,
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Figure 3.12: (a): Schematic representation of the CP and CPMG sequence. In
both sequences, the qubit state is initialized in the |↑⟩ state and then is brought to
the superposition state (|↑⟩ + i |↓⟩)/

√
2 with a π/2-pulse. In CP, we apply an odd

number of π-pulses that have the same phase as the π/2-pulse, denoted as πx. While
in CPMG, we apply an even number of π-pulses that have orthogonal phase as the
π/2-pulse, denoted as πy. Afterward, the atom is brought back to its initial state by
π/2-pulse and 3π/2-pulse in CP and CPMG sequences respectively. (b): Coherence
time T2 as a function of the number N of π-pulses for CP and CPMG sequence.

we would need a 3π/2-pulses about the x-axis to bring the state back to the |↑⟩
state.

In Fig. 3.12(b), we compare the coherence time of our qubit under the CPMG
protocol to the CP protocol. For a small number of π-pulses, the performance of
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the CPMG protocol is identical to the performance of the CP protocol since the
accumulation of pulse error is negligible at this stage. In contrast to the CP sequence,
the CPMG sequence that contains up to N = 50 π-pulses can be applied to our
qubit with reasonably high signal contrast in the coherence evolution. We achieve a
coherence time of 6.81(8) ms, which is 3.7 times longer than the optimal coherence
time obtained with the PDD protocol. We have also applied other variants of the
CPMG protocol, such as the XY schemes [84], and we observe similar coherence
performance.

Throughout this chapter, we are investigating the coherence of one single state
possessing a particular phase. For an arbitrary state on the Bloch sphere, other
robust sequences are more effective in protecting the qubit coherence such as KDDx

and KDDxy [77, 85]. Concatenated DD sequences in which phases are changed
recursively are some other alternatives for preserving arbitrary spin states [86, 87].

3.7 Conclusion
We have presented a detailed experimental study of the implementation of dy-

namical decoupling in a single neutral atom qubit system. Along the process of
characterizing and comparing the performance of various standard DD protocols
including periodic DD, Uhrig DD, CP DD, and CPMG DD, we observe an en-
hancement in the coherence time T2 by two orders of magnitude from the Ramsey
decay time T ∗

2 . The observed coherence time of 6.8 ms is sufficient to facilitate the
high-fidelity transfer of quantum states between quantum repeater nodes separated
by thousands of kilometers [88]. By treating the DD sequence as a noise filter, we
characterized the noise spectrum of an optically trapped Rubidium atom. Through
the optimization protocol in Section 3.5, we determined the best sequence in terms
of coherence preserving for our qubit system. In the last part of this chapter, we
demonstrated that the CPMG sequence performs the best in the longer timescale.

Future experiments will explore lowering the noise floor and motion-dependent
dephasing. Improvements will extend the coherence times and hence open up new
possibilities for the implementation of more robust free-space neutral atom quantum
memories for future quantum repeater networks [89]. A better understanding of the
qubit response to noise may also help to develop a broadband single-atom sensor
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that would allow imaging magnetic fields with a spatial resolution at atomic length
scales.
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Chapter 4

Mollow triplet from a single atom

This chapter presents the investigation of the atomic fluorescence emitted by a
single optically trapped atom. This includes a frequency spectrum measurement of
the fluorescence and correlation between photons originating from different parts
of the spectrum. We start with a brief theoretical description of the fluorescence
emitted by a two-level system under different driving strengths. Next, we investigate
the frequency spectrum of the resonance fluorescence using a Fabry-Perot cavity.
By utilizing the closed transition of 87Rb, we get to perform the experiment under
conditions that are coming close to the ideal condition considered in the Mollow
triplet theory. Second-order correlation measurements reveal the single photon
nature of the fluorescence concurrently with Rabi oscillations of a strongly excited
atom. The subsequent section will focus on the effect of off-resonant excitation on
the arrival time of photons originating from different peaks of the triplet spectrum.
The asymmetry in correlations between photons from two sidebands of the atomic
spectrum under off-resonant excitation indicates that there is a preferred time-
ordering of the emitted photons from different sidebands. A majority of the content
in this chapter has been published in [90].

4.1 Introduction
The study and investigation of fluorescence emitted from resonantly excited

atomic systems have played a major role in understanding the interaction between
atoms and radiation [91]. In 1930, Weisskopf first established the theory of atomic
resonance fluorescence in the limit of weak excitation [92]. In this limit, the
fluorescence spectrum of a two-level atom shows a single scattering peak centered
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at the excitation frequency that follows the linewidth of the excitation field. This
single peak consists mostly of coherent scattering and had been measured in various
systems [93–95], which is a promising way to generate highly coherent single photons
with subnatural linewidth [96, 97].

Later this result was extended to include the effect of strong excitation radiation
by Mollow in 1969 [98]. When the driving intensity increases above the saturation
regime, the incoherent component in the fluorescence dominates, and the single
peak spectrum evolves into a triplet structure. The photons emitted in this process
continue to be of interest in quantum optics, as these photons exhibit different
correlation signatures in particular conditions such as off-resonant excitation [99–
105]. There has been renewed interest in the photon statistics of the coherent and
incoherent components that coexist in the fluorescence [106–109]. With better
filtering techniques that are available nowadays, the photon correlation from these
two components can be measured independently.

The Mollow triplet was first observed experimentally in an atomic beam passing
perpendicularly through an intense laser field [110–112] where the emitted fluo-
rescence spectrum was analyzed using a Fabry-Perot cavity. This configuration
minimized Doppler broadening due to atomic motion and the fluorescence could
be approximated as the light emitted from individual non-interacting atoms. Since
then, the Mollow triplet has been successfully observed in many different systems
such as quantum dots [95, 103, 113–116], molecules [117], ions [118, 119], cold atomic
cloud [120], and superconducting qubits [121–123].

While easier to implement experimentally, light interaction with an ensemble of
atoms will mask certain features of the process such as photon anti-bunching. In
contrast, a single optically trapped atom is an excellent candidate to investigate
photon correlations between different frequency components of the Mollow triplet.
An optically confined atom can be cooled to sub-Doppler temperature owing to
polarization gradient cooling (PGC) [124, 125], and therefore suppresses the Doppler
contribution to the spectrum. Using a magnetic field to lift the Zeeman degeneracy
and an appropriate driving laser polarization, the closed transition of an ideal
two-level system can be implemented, coming close to the ideal situation considered
in the Mollow triplet theory.
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4.2 Theoretical Background
In this section, we will give a brief overview of the two-level system interacting

with a classical field [126]. The characteristic of the fluorescence emitted during this
process such as the intensity correlation and the frequency spectrum will also be
discussed in the following section.

4.2.1 Two-level system

Let’s start with a two-level system that consists of a ground state and an
excited state, labeled as |g⟩ and |e⟩. These are the eigenstates of the unperturbed
Hamiltonian given by

H0 = ℏω0(|e⟩ ⟨e|), (4.1)

where ω0 is the resonant frequency of the unperturbed system. As such, the system
at any time t can be described as a coherent superposition

|ψ(t)⟩ = cg(t) |g⟩ + ce(t) |e⟩ . (4.2)

When we start to consider the two-level system interacting with a classical
monochromatic field E(t) with frequency ω, the total Hamiltonian can be written as

H = H0 +HI . (4.3)

The interaction Hamiltonian, HI under the dipole approximation is given by

HI = −d · E, (4.4)

where d = −er is the dipole operator.
Now, we rewrite the field into positive and negative frequency components E(+)

and E(−):

E(t) = ϵ̂E0 cos(ωt)

= ϵ̂
E0

2 (e−iωt + eiωt)

= E(+) + E(−).

(4.5)

Here, E0 is the field amplitude and ϵ̂ is the unit polarization vector of the field.
Using the atomic lowering operator σ = |g⟩ ⟨e|, the dipole operator becomes

d = ⟨g|d|e⟩ (σ + σ†). (4.6)
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Using Eqn. 4.5 and Eqn. 4.6, we can now write the Hamiltonian into

H = ℏω0σ
†σ + ℏΩ

2 (σe−iωt + σeiωt + σ†e−iωt + σ†eiωt). (4.7)

We have defined the Rabi frequency that characterizes the interaction strength as

Ω = −⟨g|ϵ̂ · d|e⟩E0

ℏ
. (4.8)

In general, we can choose the phase of the dipole matrix element such that the Rabi
frequency is real and positive.

With the Hamiltonian in Eqn. 4.7, substitution of |ψ⟩ into the Schrödinger
equation iℏ∂t |ψ⟩ = H |ψ⟩ results in

∂tcg |g⟩ + ∂tce |e⟩ = −iω0ce |e⟩ − i
Ω
2 [(e−iωt + eiωt)ce |g⟩ + (e−iωt + eiωt)cg |e⟩]. (4.9)

By projecting onto ⟨g| and ⟨e|, we can get a pair of coupled differential equations,

∂tcg = −iΩ2 (e−iωt + eiωt)ce

∂tce = −iω0ce − i
Ω
2 (e−iωt + eiωt)cg.

(4.10)

In order to eliminate the oscillatory terms in the coupled equation, we make a
transformation into the rotating frame of the field by defining c̃e = cee

iωt. The
coupled equation in the rotating frame is written as

∂tcg = −iΩ2 (1 + e−i2ωt)c̃e

∂tc̃e = i∆c̃e − i
Ω
2 (1 + ei2ωt)cg,

(4.11)

where ∆ = ω − ω0 is the detuning of the field from the resonance of the two-level
system. In the rotating wave approximation (RWA), we can ignore the e−i2ωt and
ei2ωt term in Eqn. 4.11 because these dynamics are oscillating at twice the field
frequency. We can then rewrite the coupled equation as

∂tcg = −iΩ2 c̃e

∂tc̃e = i∆c̃e − i
Ω
2 cg.

(4.12)

From Eqn. 4.12, we can infer the effective Hamiltonian in the rotating frame

H̃ = H̃0 + H̃I

= −ℏ∆σ†σ + ℏΩ
2 (σ + σ†).

(4.13)
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In this frame where the field is stationary, the energy of the excited state is shifted
by ℏω, and the energy difference between |g⟩ and |e⟩ become ℏ∆. This effectively
transforms the problem into an interaction between two states with an energy
difference of ℏ∆ and a dc electric field. Thanks to RWA, this problem will be easier
to solve due to the elimination of the explicit time dependence in the Hamiltonian.

The uncoupled energy basis |g⟩ and |e⟩ are no longer the eigenstates of Eqn. 4.13.
We can work out the new eigenenergies to be superpositions of the uncoupled energy
basis

E± = ℏ
2(−∆ ± Ω′), (4.14)

with the generalized Rabi frequency Ω′ =
√

Ω2 + ∆2. The corresponding eigenstates
are given as

|+⟩ = sin θ |g⟩ + cos θ |e⟩

|−⟩ = cos θ |g⟩ − sin θ |e⟩ ,
(4.15)

where the angle θ is defined as tan 2θ = −Ω/∆. These are the dressed states of
the atom as a result of interaction with the field. In the case of exact resonance
(∆ = 0), the two energy states would be degenerate when the coupling field does
not exist. However, the two degenerate states start to split when we turn on the
coupling field and the splitting is proportional to the coupling strength. This shift
of the eigenenergies at the avoided crossing is also known as AC stark shift.

Next, we include the impact of spontaneous decay in our formulation. In the
rotating frame, we solve the master equation for the density matrix ρ̃ = |ψ̃⟩ ⟨ψ̃|,

∂tρ̃ = − i

ℏ
[
H̃, ρ̃

]
+ L [ρ̃] , (4.16)

where L [ρ̃] is the Lindblad operator accounting for spontaneous decay. Considering
the case for homogeneous broadening, we can obtain the optical Bloch equations

∂tρee = i
Ω
2 (ρ̃eg − ρ̃ge) − Γρee

∂tρgg = −iΩ2 (ρ̃eg − ρ̃ge) + Γρee

∂tρ̃ge = −iΩ2 (ρee − ρgg) − (Γ
2 + i∆)ρ̃ge

∂tρ̃eg = i
Ω
2 (ρee − ρgg) − (Γ

2 − i∆)ρ̃ge

(4.17)
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with Γ as the excited state decay rate. The matrix element ρ̃gg and ρ̃ee that represent
the populations remain the same in this frame while the coherences differ by a phase
factor,

ρ̃gg = cgc
∗
g = ρgg

ρ̃ee = c̃ec̃
∗
e = cec

∗
e = ρee

ρ̃ge = cg c̃
∗
e = cgc

∗
ee

−iωt = ρgee
−iωt

ρ̃eg = ρege
iωt.

(4.18)

In many applications, it is sufficient to know the steady state of the system, i.e. the
solutions of the Eqn. 4.17 under the condition of ∂tρ = 0. After a little algebra, we
find the steady-state population and coherence to be

ρee(t → ∞) = Ω2/Γ2

1 + (2∆/Γ)2 + (2Ω2/Γ2) = 1
2

s

1 + s

|ρ̃eg(t → ∞)|2 = | Ω(2∆ − iΓ)
Γ2 + (2∆)2 + 2Ω2 |2 = 1

2
s

(1 + s)2 .

(4.19)

Here we introduce the saturation parameter, s as

s = 2Ω2

Γ2 + 4∆2 . (4.20)

For the case of on resonance excitation (∆ = 0), we can define the saturation
intensity, Is as

I

Is
= 2Ω2

Γ2 = s(∆=0), (4.21)

where I = (ϵ0c/2)E2
0 is the excitation field intensity. The saturation intensity is a

quantity that sets a scale over what we mean by large or small intensities. When
the excitation intensity is small relative to the saturation intensity, the steady-state
excited state population increases linearly with the intensity. As the intensity
increases above Is, the excited state population begins to saturate towards one half,
given that ∆ = 0. The saturation behavior here illustrates the nonlinear response of
the two-level system interacting with the field, which is not predicted classically.

4.2.2 Correlation functions

Correlation functions of the light emitted by the two-level atom can give us
some insights into the characteristics of the fluorescence itself. The normalized first
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and second-order correlation function of the field emitted by the atom are formally
defined as

g(1)(τ) = ⟨E(−)(t)E(+)(t+ τ)⟩
⟨E(−)(t)E(+)(t)⟩

g(2)(τ) = ⟨E(−)(t)E(−)(t+ τ)E(+)(t+ τ)E(+)(t)⟩
⟨E(−)(t)E(+)(t)⟩2 .

(4.22)

Adapting the source field expression from [127], the field emitted from the two-level
atom can be written quantum mechanically in terms of the atomic lowering and
raising operator. The correlation functions in Eqn. 4.22 now become

g(1)(τ) = ⟨σ†(t)σ(t+ τ)⟩
⟨σ†(t)σ(t)⟩

g(2)(τ) = ⟨σ†(t)σ†(t+ τ)σ(t+ τ)σ(t)⟩
⟨σ†(t)σ(t)⟩2 .

(4.23)

Immediately we can see that for a single two-level atom, the intensity correlation
function at τ = 0, g(2)(0) is zero since σ2 vanishes. The atom is in the ground state
after it emits a photon and cannot emit again until it is being excited to the excited
state. As such, the probability to detect a second photon at τ = 0 is zero. This
phenomenon known as antibunching is manifestly quantum. For classical fields, the
relation ⟨I(t)2⟩ ≥ ⟨I(t)⟩2 inferred from Cauchy’s inequality ensures that g(2)(τ) ≥ 1
for all time τ . Photon antibunching was first demonstrated experimentally by Kimble
et al. in 1977 [128].

While a vanishing intensity correlation is a clear indication of antibunching,
the dynamic of g(2)(τ) near τ = 0 reveals more about the underlying atom-light
interaction such as a Rabi oscillation. Using the quantum regression theorem [127,
129], we can write the intensity correlation function as

g(2)(τ) = ρee(τ)
ρee(t → ∞) , (4.24)

where ρee(τ) is the excited state population with the initial condition ρee(0) = 0. For
the case where detuning is zero, the optical Bloch equation can be solved analytically
and the g(2)(τ) for a single atom can be expressed as [127]

g(2)(τ) = 1 − e−(3Γ/4)|τ |
(

cos ΩΓτ + 3Γ
4ΩΓ

sin ΩΓ|τ |
)
, (4.25)

where ΩΓ =
√

Ω2 − (Γ/4)2 is the damped Rabi frequency.
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For driving fields of low intensity, g(2)(τ) shows a monotonic increase to unity
as τ increases from zero to much larger than 1/Γ. When the driving field intensity
increases above saturation, g(2)(τ) resembles the case for weak excitations at the
large delay, but oscillations corresponding to the Rabi frequency appear around zero
delay. Upon detection of the first fluorescence photon, the atom is projected onto
the ground state and the probability to detect the subsequent photon at some later
time, τ is proportional to the excited state population of the atom. As such, this
oscillation can be seen as an indication of the Rabi flopping undergone by the atom
under a strong excitation.

4.2.3 Coherent & Incoherent Scattering

In atom-light interaction, light scattering is a second-order process that involves
the absorption of a photon at frequency ωL and followed by the emission of a photon
at frequency ωsc. This scattering primarily consists of two contributions - coherent
and incoherent scattering. The coherent scattering includes emitted photon that has
the same frequency as the excitation field (ωsc = ωL). In contrast, the incoherent
scattering includes all of the remaining components of the fluorescence, with ωsc

different from ωL.
Information on the coherent component (on the first-order) of the scattered field

can be extracted through the expectation value of the field operators E(−)
sc and E(+)

sc .
The fraction of the first-order coherently scattered light is described as [127]

Īcohsc

Īsc
= ⟨E(−)

sc (t)⟩⟨E(+)
sc (t)⟩

⟨E(−)
sc (t)E(+)

sc (t)⟩
. (4.26)

This fraction reaches unity when the scattering is purely coherent. Through the
same procedure as in Eqn. 4.23, we can write Eqn. 4.26 in terms of the atomic
lowering and raising operator. The steady-state ratio is given as

Īcohsc

Īsc
= |g(1)(t → ∞)|

= ⟨σ†(t → ∞)⟩⟨σ(t → ∞)⟩
⟨σ†(t → ∞)σ(t → ∞)⟩

= |ρ̃eg(t → ∞)|2
ρee(t → ∞) ,

(4.27)

where ρ̃eg and ρee are the atomic density matrix elements. Combined with the
solutions of the optical Bloch equations in Eqn. 4.19, we obtain the fraction of
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coherently scattered light at steady state

Īcohsc

Īsc
= ∆2 + (Γ/2)2

∆2 + (Γ/2)2 + Ω2/2 = 1
1 + s

, (4.28)

where s is the saturation parameter.
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Figure 4.1: Dependence of total, coherent and incoherent scattering rate in units of
Γ as a function of saturation parameter. At s = 1, the coherent scattering reaches
its maximum and the incoherent scattering starts to dominate.

The total scattering rate is given by the product of the excited state population
and decay rate

Rtotal = Γρee(t → ∞) = Γ
2

s

1 + s
. (4.29)

Since the scattering rate scales with the emission intensity, we can obtain the
coherent scattering rate from Eqn. 4.28

Rcoh = Rtotal
1

1 + s
= Γ

2
s

(1 + s)2 . (4.30)

The incoherent scattering rate can be deduced from the difference of Rtotal and Rcoh

Rincoh = Rtotal −Rcoh = Γ
2

s2

(1 + s)2 . (4.31)

Figure 4.1 shows the different contributions to the scattering rate as a function
of the saturation parameter. When the saturation parameter is small, the coherent
scattering grows linearly with s and dominates over the incoherent scattering. The
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coherent scattering reaches an absolute maximum at s = 1 and decreases when s

gets larger while the incoherent contribution starts to increase and saturates.
Apart from the difference in scaling with respect to the excitation intensity, the

coherent and incoherent components of the fluorescence also have distinct spectral
distributions. For the remaining part of this section, we consider the case where the
excitation light is exactly on resonant with the atomic transition, where ωL = ω0.
Using the Wiener–Khinchin theorem, the power spectrum S(ωsc) of the resonance
fluorescence can be calculated as the Fourier transform of its first-order correlation
function

S(ωsc) = 1
2π

∞∫
−∞

dτg(1)(τ)eiωscτ . (4.32)

We decompose the correlation function g(1)(τ) of the fluorescence into coherent
and incoherent contributions. The coherent part of g(1)(τ) can be written as [127]

g
(1)
coh(τ) = e−iωLτ |g(1)(t → ∞)|

= e−iωLτ
1

1 + s
,

(4.33)

with the result from Eqn. 4.28.
In order to compute the complete power spectrum that contains both coherent

and incoherent contributions, we can solve the optical Bloch equations in Eqn. 4.17,
and obtain

S(ω) = Scoh(ω) + Sincoh(ω), (4.34)

with
Scoh(ω) = s

(1 + s)2 δ(ω), (4.35)

Sincoh(ω) = s

8π(1 + s)
Γ

ω2 + (Γ/2)2

+ s

32π(1 + s)2
3Γ(s− 1) + Γ

Ω(5s− 1)(ω + Ω)
(ω + Ω)2 + (3Γ/4)2

+ s

32π(1 + s)2
3Γ(s− 1) − Γ

Ω(5s− 1)(ω − Ω)
(ω − Ω)2 + (3Γ/4)2 ,

(4.36)

where ω is the relative frequency from the monochromatic driving field (ω = ωL−ω0),
and Γ represents the natural linewidth of the atomic transition, which in this case is
2π × 6.07 MHz for 87Rb D2 transition.
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When the monochromatic driving field is weak (s ≪ 1), the fluorescence consists
mostly of light scattered elastically by the atom. This coherent component is
characterized by a Dirac delta function at the driving frequency (Eqn. 4.35), which
appears as a sharp peak at the driving frequency in the spectrum that resembles the
spectrum of the driving field. As the driving intensity increases, the incoherently
component in the scattered light starts to emerge in the spectrum, while the coherent
component will gradually reduce. The incoherent component dominates the spectrum
as Rabi frequency Ω increases, and the sidebands begin to emerge.

Figure 4.2: Theoretical resonant fluorescence spectra at different saturation parame-
ter, s according to Eqn. 4.36.

The incoherent power spectrum Sincoh(ω) has a central resonant Lorentzian peak
with a full-width half maximum (FWHM) of Γ as well as two side peaks ±Ω away
from the resonance, with a FWHM of 3Γ/2. These sidebands, together with the
central peak, form the Mollow triplet. This result was derived by Mollow using
a semi-classical approach [98], but the same result can be obtained using a fully
quantum-mechanical picture [130].
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4.2.4 Dressed state picture

One way to interpret the spectral features is to describe the atomic energy states
as dressed by the driving field [102, 131]. In the previous section, we discussed how
the dressed states result from the interaction between an atom and a classical field.

|e, n

|g, n+1

|e, n-1

|g, n

|1(N)

|2(N)

|1(N-1)

|2(N-1)

'

L

(
L

')

(
L
+

')

'

Bare state Dressed state

Figure 4.3: Dressed-state picture for an atom coupling to an intense driving field.
Bare states are characterized by the photon number Fock state (n), and the atom in
the ground (g) or excited (e) state. Their energy difference is ℏ∆ in the rotating
frame, where ∆ is the detuning of the driving field from atomic resonance. Dressed
states are described by a pair of states with a number of total excitations, N , split
by ℏΩ′ with a generalized Rabi frequency Ω′ =

√
Ω2 + ∆2.

We can extend this result to the case of the atom interacting with a quantized
field. In this picture, the new eigenstates are a superposition of the bare states
|g, n+ 1⟩ and |e, n⟩, where “g” and “e” refer to the ground and excited states of the
atom, while n indicates the number of photons from the driving field (see Fig. 4.3). In
every manifold where the total number of excitations, N , is the same, the eigenstates
are split by the Rabi frequency for on-resonance excitation.

The three frequency components in the fluorescence can be explained by spon-
taneous decay from a manifold of N total excitations to a manifold with (N − 1)
excitations. Four optical transitions are possible in this process. Two of them are
degenerate (green decays in Fig. 4.3) and correspond to the central peak in the
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fluorescence spectrum, while the sidebands ±Ω away from the central peak originate
from the other two transitions (red and blue decays in Fig. 4.3).

For on-resonance excitation, both the dressed states are the equal superposition
of the two bare states. As such, we would expect the four possible decays will occur
at the same rate. This leads to the weighting of 1:2:1 in the total spectral intensities
of the incoherent peaks under resonant excitation. Note that this picture is most
useful when Ω ≫ Γ where the dressed state transitions are spectrally resolved.

Figure 4.4: Setup for probing light-atom interaction in free space. A single 87Rb atom
is cooled and trapped in a far-off-resonance dipole trap. One avalanche photodetector
(APD1) is used to monitor the atomic fluorescence and acts as a trigger to start
the experimental sequence. (a) A Fabry-Perot cavity is placed before APD2 to
record the frequency spectrum of the atomic fluorescence. (b) Hanbury-Brown
and Twiss (HBT) configuration to measure second-order intensity autocorrelation.
(c) Cross-correlation measurement setup with a cavity in each arm before APD5
and APD6 to select photons from specific frequency windows. UHV: ultra-high
vacuum chamber, IF: interference filter centered at 780 nm, λ/4: quarter-wave plate,
PBS: polarizing beam splitter, FBS: fiber beam splitter, B: magnetic field.
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4.3 Experimental Realization
In this section, we will describe the experimental setup and sequences that

are crucial in the frequency spectrum and photon correlation measurements. The
complete experimental setup is shown in Fig. 4.4.

We are probing the closed transition 52S1/2 |F = 2, mF = −2⟩ ≡ |g⟩ to 52P3/2

|F = 3, mF = −3⟩ ≡ |e⟩ such that it resembles the ideal two-level system in the
theoretical description. As such, we do not need to consider the complications in
the spectrum that arise due to the multilevel structure of the system.

4.3.1 Experimental Sequence

 
Optical dipole trap

 
Probe

 
Bias B �eld

 
MOT beams

 
Quadrupole B �eld

 
Optical pumping

 
Atom

loading

 
PGC

 
Optical

pumping

 
Excitation
window

 
Check for

atom
 

10ms
 

10ms
 

10-40ms
 

2�s

Atom survived

Atom lost

 reduced
power

Figure 4.5: Experimental sequence to measure the frequency spectrum of the atomic
fluorescence.

Fig. 4.5 outlines the experimental sequence. First, we monitor the fluorescence
signal until a single atom is loaded into the FORT. Then we switch off the quadrupole
field to prevent further loading of atoms into the trap. Next, we lower the power of
the MOT beams and perform polarization gradient cooling (PGC) for 10 ms. This
can reduce the atomic motion to a temperature of 14.7(2)µK, corresponding to a
Doppler broadening of 113 kHz. A bias magnetic field of 1.44 mT is applied along the
FORT laser propagation direction to remove the degeneracy of the Zeeman states,
and the atom is optically pumped into |g⟩ by optical pumping beam.

Now, we turn on the probe laser beam that propagates along the optical axis for
2µs. This pulse length is chosen to maximize the duty cycle of photon collection
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while avoiding excessive recoil heating of the atom. The probe frequency is locked
to the F = 2 → F ′ = 3 hyperfine transition of the 87Rb D2 line, and shifted by an
AOM in order to address the |g⟩ ↔ |e⟩ transition. The probe is prepared into a σ−

polarization with a quarter-wave plate after a polarizing beam splitter (PBS) to
target the closed transition. We collect the backward scattered photons through the
same lens and couple them into a single-mode fiber, avoiding the strong light levels
of the probe laser for analysis.

After the probe phase, we check the presence of the atom by turning on the
MOT beams and comparing the fluorescence rate with the set threshold. If the atom
is present, the experimental sequence will be repeated from the PGC phase; else the
quadrupole magnetic field will be turned on, and the experiment resumes with the
atom loading phase. We repeat this sequence over many experimental cycles until
we gather sufficient data for analysis.

4.3.2 Fluorescence Characterization

Before we proceed to measure the frequency spectrum of the fluorescence, we
first perform a saturation measurement to determine the overall detection efficiency.
By increasing the probe power, we can gauge how strongly we can excite the single
atom in terms of the saturation parameter s.

Using the same experimental sequence described above, we detect the backscat-
tered photon with avalanche photodetectors, APDb under different probe powers,
while the incident power on the atom is inferred by the number of photons detected
by APDf in the forward direction, after taking into account the total detection
efficiency in the forward direction, ηf .

In our system, we characterize ηf to be 0.0109 when we measure the data in
Fig. 4.6, taking into account the fiber coupling (62% coupling efficiency), detector
efficiency (56% detection efficiency), and attenuation of the neutral density filter
(3.15% transmission) used to prevent the saturation of the detector. With this, we
can infer the incident probe power on the atom, Pprobe, to be

Pprobe = Rf

ηf
ℏωL, (4.37)

where Rf is the number of photons detected per second at APDf , and ωL is the
frequency of the laser.
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Figure 4.6: Resonant saturation measurement, with the blue solid line representing
the fit to Eqn. 4.38 with saturation power Psat = 6.3(2) pW and total detection
efficiency η = 1.79(2) %.

In the result shown in Fig. 4.6, we can clearly observe the saturation behavior of
the scattering rate as the probe power increases. The scattering rate Rsc is expected
to follow a saturation function

Rsc = ηΓ
2

Pprobe

Pprobe + Psat
. (4.38)

From the fit in Fig. 4.6, we can infer that the atomic response saturates at an
incident probe power of Psat = 6.3(2) pW and total detection efficiency of the atomic
fluorescence is η = 1.79(2) %. These values are similar to the previous reported
in [42].

4.3.3 Fabry-Perot Cavity

A Fabry-Perot cavity is the core component in our setup measuring the frequency
spectrum of atomic fluorescence. For this experiment, we use a home-built cavity
with the structure shown in Fig. 4.7.

The main part of the cavity is a metal block with a through hole. A ring piezo
that is responsible for the fine adjustment of the cavity length is glued to one end of
the hole. To connect the cavity mirror with the piezo, we use the Thorlabs �1/2"
lens tube to hold the mirror. The position of the mirror can be adjusted using
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mirrors in
lens tube

Peltier

thermistor

ring piezo

Figure 4.7: A photo of the home-built cavity enclosed in an acrylic box. The red
arrow indicates the laser beam path. The cavity mirrors are held by lens tubes
that are connected to the cavity body. To avoid cavity length drift due to thermal
expansion, we stabilize the cavity temperature with a Peltier controlled by a PID
control loop to about ±5 mK. The cavity resonance is manipulated by a ring piezo
that modifies the cavity length.

the retainer ring and the tube is screwed into a threaded ring that sticks on the
other end of the piezo. Using the same method, another mirror is connected to the
internally threaded hole on the other side of the metal block.

The advantage of this design is the flexibility to vary the cavity linewidth without
modifying the mode-matching alignment. For example, we can replace the existing
mirror with another mirror that has the same radius of curvature but different
reflectivity at the same location in the lens tube. By doing so, the mode mismatch
of the incoming light into the cavity is minimal and can be recovered in a short time.
For the measurement in Section 4.3.6, this configuration enabled us to change the
cavity linewidth to 20 MHz without too much hassle. It will also allows to measure
the photon statistic of the coherent and incoherent scattering separately by using
different filter widths to isolate the respective component [106–108].

In terms of temperature control, we sandwich a Peltier in between the metal
block and a heatsink. We can monitor the temperature of the cavity through a
thermistor that is attached to it. Using a PID control system, we stabilize the cavity
temperature to the desired setpoint by voltage feedback into the Peltier. In this way,
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the change in cavity length due to thermal expansion will be minimized.
Next, we need to connect the cavity resonance to a known frequency reference

and still be able to tune the resonance across a frequency range to obtain the atomic
spectrum. We do this by employing a Pound–Drever–Hall (PDH) technique to lock
the cavity to a 795 nm laser that is resonant with the 87Rb D1 transition. The detail
of this locking scheme is shown in Fig. 4.8.

Fabry-Perot
cavity

APD

15MHz
RF signal

EOM

PID
Feedback

PD

PBS

BS

Mixer

HWP

HWP

IF

Mode-
matching

lens

795nm
laser

Atomic
�uorescence

RF Source

Figure 4.8: Schematic of the cavity locking setup. The locking sequence starts
with a 795 nm laser that is locked onto the 87Rb D1 transition. An electro-optical
modulator (EOM) generates a tunable sideband (from a RF source) that is further
modulated with a frequency of 15 MHz. By coupling this light to the cavity, the
cavity resonance can be locked onto this tunable sideband via the Pound–Drever–Hall
(PDH) technique. The photodetector (PD) signal generated from the reflected light
is mixed with the 15 MHz signal to create an error signal. The PID controller turns
this signal into a feedback to the cavity piezo to lock the cavity to the tunable
sideband. A 780 nm interference filter (IF) is placed before the APD to prevent the
collection of 795 nm light.

The 795 nm laser is phase-modulated with a frequency of 15 MHz via an electro-
optical modulator (EOM) to generate two sidebands. The modulated light is
coupled to the cavity through the mode-matching lens, and the reflected signal that
is modulated by the cavity transfer function will be detected on the photodetector
(PD in Fig. 4.8). The detected signal is mixed with the RF source to produce error
signals which indicates how far away the cavity resonance is from the laser carrier
frequency. We use a PID controller to provide a control voltage for the cavity piezo.
This will change the cavity length and in turn, lock the cavity resonance to the laser
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carrier frequency. The long term stability provided by this locking scheme enabled
us to measure the frequency spectrum of the fluorescence over a long period of time.
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Figure 4.9: Oscilloscope trace showing the PDH error signal and the cavity transmis-
sion. We slowly change the cavity length to monitor the various sideband profiles in
time. The peak around t = 0 is the carrier. A tunable modulation frequency, ωm is
sent into the EOM to create sidebands for locking purposes. In this example the
ωm is chosen to be 2π×120 MHz and the locking point is indicated with an arrow.
By changing ωm, we can control the cavity resonance. The 15 MHz sidebands are
responsible for the generation of the PDH error signal. The error signal is shifted by
2.8 V for better visualization.

However, we want to be able to scan the cavity resonance around the collected
fluorescence frequency. To achieve this, we send in another RF signal through a RF
combiner to generate additional sidebands (Fig. 4.9) with a modulation frequency
of ωm/2π. This ωm/2π corresponds to the frequency difference between the 795 nm
laser and the collected atomic fluorescence. Since the value of ωm depend on the
absolute length of the cavity, this frequency can be tuned by operating the cavity at
the next or a few free spectral range away. The typical value of ωm in our setup
is around 2π×200 MHz. By locking the cavity resonance to this tunable sideband,
we can measure the frequency spectrum of the atomic fluorescence by changing ωm
across the desired frequency range.

For the cavity used for spectrum measurement, it is a symmetric cavity with
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Figure 4.10: Cavity transmission of the probe laser to characterize the cavity
linewidth. The blue solid line is a Lorentzian fit which results in a linewidth of
3.92(5) MHz.

mirror reflectivity of around 99 % at 780 nm and a curvature radius of 200 mm. The
cavity length is 12 cm, corresponding to a linewidth of 4 MHz and a free spectral
range of 1.25 GHz. With a good mode-matching into the cavity mode, a transmission
of more than 95% was achieved. We characterize the cavity linewidth by changing
the cavity resonance and measure the transmission of the probe light after the cavity.
The result is shown in Fig. 4.10. A linewidth of 3.92(5) MHz can be extracted from a
Lorentzian fit. This value will be used for the deconvolution of the atomic spectrum
measured in the next section.

4.3.4 Mollow Triplet spectrum

The light collected during the 2µs excitation window is sent into the cavity and
the transmission is recorded with an APD as shown in Fig. 4.4(a). By repeating
this procedure at different cavity resonant frequencies, we can obtain the atomic
fluorescence spectrum.

Fig. 4.11 shows a series of frequency spectra for increasing excitation powers. At
weak excitation, the FWHM of the single peak in Fig. 4.11(a) is 2.5(3) MHz after
deconvolution of the cavity contribution. This shows that at a driving power that
is well below saturation, the coherent component with a linewidth smaller than Γ
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Figure 4.11: Normalized resonance atomic emission spectra at different excitation
intensities recorded by scanning the Fabry-Perot cavity with the setup in Fig. 4.4(a).
For (b)-(e), the solid line is a fit to Eqn. 4.34 convoluted with the cavity transfer
function and the effect of laser reflection. The Rabi frequency Ω extracted from the
fit is labeled in Fig. 4.11(b)-(e). The free parameters in these fits are Rabi frequency,
natural linewidth, and laser reflection.

dominates the spectrum. The blue solid line in Fig. 4.11(a) is a fit to a Lorentzian
function, convoluted with the cavity transfer function.

As the power increases, the three-peak structure emerges and the splitting
between the peaks also increases. The fit to the experimental data is done with
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Eqn. 4.34 convoluted with the cavity transfer function. After excluding cavity
contribution, the central peak in Fig. 4.11(e) has a FWHM of 7.8(3) MHz extracted
from the fit. This value is close to the atomic natural linewidth of 87Rb, thus
justifying the claim that an optically trapped single atom can be laser cooled to
mitigate the Doppler broadening effect.

Theoretically, the height ratio between the central peak and the sidebands is
1 : 3 : 1 according to Eqn. 4.34, owing to the fact that the sidebands have a larger width
compared to the central peak. After taking into account the cavity contribution,
the height of the central peak should decrease such that the ratio reaches around
1 : 2.6 : 1. However, the measured spectra show central peaks with about 3.7 times the
height of sidebands (average value of Fig. 4.11(c)-(e)). This inconsistency between
the theoretical prediction and the experimental data can be likely attributed to the
reflection and scattering of the probe laser from the optics. Taking this reflection
into consideration by adding a term to Eqn. 4.34 that scales with power in a model
to describe our experiment, we can extract how much power from the observed
spectrum can be attributed to such a reflection. We characterized this laser reflection
from the fit and found a contribution of 0.9 %, 2.4 % and 4.5 % to the total power
in the spectra (c)-(e) in Fig. 4.11. This explained the higher central peak in the
experimental measured spectra.

4.3.5 Second Order Correlation Function

In the subsequent part of the experiment, we replace the Fabry-Perot cavity with a
fiber beam splitter and two APDs in a Hanbury-Brown and Twiss configuration [132]
as shown in Fig. 4.4(b). The arrival time of the photons is recorded. The second-order
intensity correlation function (g(2)(τ)) of the atomic fluorescence can be inferred
through

g(2)(τ) = ⟨P1(t)P2(t+ τ)⟩
⟨P1(t)⟩⟨P2(t+ τ)⟩ , (4.39)

where P1(2)(t) is the probability to detect a photon at APD1(2) at time t and ⟨· · · ⟩
denotes the statistical average.

The time delay τ between the photodetection events are sorted into a histogram.
In order to obtain the expression in Eqn. 4.39, we normalize the histogram to

R1 ×R2 × tbin × T, (4.40)
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where R1(2) is the average count rate at APD1(2), tbin is the bin width of the delay
histogram and T is the total measurement time. From the g(2)(τ) result, the Rabi
frequency Ω can be also extracted from the fit, and it serves as an independent
measurement allowing comparison to the values obtained from the Mollow triplet
spectrum measurement.
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Figure 4.12: Second-order correlation function of the single atom at different excita-
tion intensities. The solid line is a fit to Eqn. 4.25 with the inclusion of a triangular
function resulting from a convolution of two square pulses. The Rabi frequency Ω
shown for each spectrum is extracted from the respective fits.
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Figure 4.13: Decay of correlation due to finite collection window on a long time scale.
For a collection window of 2µs, the correlation will result in a 4µs wide triangular
envelope.

The correlation measurements in Fig. 4.12 are fitted using Eqn. 4.25, multiplied
with a triangle function that results from the convolution of two square pulses of
the same length. This is done to account for fluorescence from each detector being
collected during a 2µs wide time window. The correlation between two such windows
will result in a 4µs wide triangular envelope in the correlation measurement. This
triangular envelope can be seen in Fig. 4.13 when the correlation at a longer time
delay is plotted out. The extracted Rabi frequency, shown in Fig. 4.12 for different
driving powers, agrees well with the values for Ω obtained from the Mollow triplet
spectra.

4.3.6 Off-resonant excitation

Until this point, all the experiments have been carried out under the condition
of on-resonant excitation. When the atom is excited off-resonantly, the spectrum of
the fluorescence does not have a simple analytical solution. However, we can inspect
this problem in the dressed state picture and get some useful information out of it.
When we consider the case of very large detuning (∆ ≫ Γ), the splitting between
the dressed states is given by the generalized Rabi frequency, Ω′ =

√
Ω2 + ∆2,

where ∆ is the detuning of the laser from atomic resonance. As compared to the
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on-resonant case, the off-resonant spectrum is slightly different, with the central
peak sitting at the driving frequency and two sidebands located ±Ω′ away. Due to
the non-zero detuning, both the dressed states are no longer an equal superposition
of the two bare states. At the limit of very large detuning (∆ ≫ Ω), |1(N)⟩(|2(N)⟩)
consists mostly of |e, n⟩(|g, n+ 1⟩). The decay from |1(N)⟩ to |1(N − 1)⟩ (|2(N)⟩
to |2(N − 1)⟩) happens at a much lower rate than the other two paths. As such,
the power ratio between the central peak and the sidebands also deviates from the
on-resonant case, with the central peak being suppressed as detuning increases.

While the atom is excited resonantly, the emission of the sideband photons does
not have a preferred order. As such, the cross-correlation between photons from
different sidebands is symmetric with respect to zero time delay, τ = 0. However, if
the excitation field is detuned from the atomic resonance, this symmetry is broken
as the emission process of the sideband photons now has a preferred order [100–
103]. The preferred order of the emission depends on the sign of the detuning, and
manifests as an asymmetry in the cross-correlation measurement around τ = 0.

In this part of the experiment, we red-detuned the excitation laser by 30 MHz
from the atomic resonance. As shown in Fig. 4.4(c), there is a Fabry-Perot cavity in
front of each APD to filter the incoming fluorescence such that photon correlation
between chosen spectral components can be measured. To better transmit the
photons from different peaks, the cavities used in this experiment have a linewidth
of 20 MHz. The cavities are almost the same as the ones used in the spectrum
measurement, with the only difference being the 95 % mirror reflectivity.

To align the cavity resonance with the respective sidebands, we first measure the
second-order correlation of the off-resonance fluorescence. The data is shown in the
inset of Fig. 4.14 and the solid blue line is fit to extract Ω′, which is 2π× 42(1) MHz
in this case. For the off-resonant case, the second-order correlation function does
not have a simple analytical form. As such, we numerically solve the optical Bloch
equation and fit the measurement result to it according to Eqn. 4.24. With this, the
cavity resonance is locked at ±Ω′ away from the driving frequency to isolate the
sidebands photon.

Figure 4.14 shows the cross-correlation measurement between the opposite Mollow
sidebands where we use the photon from the lower energy sideband as the ‘start’
trigger and the photon from the other sideband as the ‘stop’ signal. The measurement
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Figure 4.14: Normalized cross-correlation between photons from two opposite Mol-
low sidebands as a function of delay τ between detection of a photon from the
higher energy sideband after detection of a photon from lower energy sideband.
Inset: Normalized intensity autocorrelation of the unfiltered off-resonance atomic
fluorescence to extract Ω′.

shows a clear bunching behavior around τ = 0. We normalize the correlation function
with respect to coincidence counts from a time window that is far from τ = 0. With
this, we obtain a bunching value of 8.1(8). The normalized correlation can be fitted
by two exponentials, with time constants of τrise = 7.8(9) ns and τfall = 30(2) ns,
respectively. The theoretical prediction following [101] for τrise and τfall are 7.96 ns
and 35.02 ns, respectively. The asymmetry of the correlation function indicates that
the emission of the sideband photons has a preferred time order for off-resonant
excitation, in this case first an emission from the lower energy sideband, followed by
a second emission from the higher energy sideband.

Using Eqn. 40 from [101], the theoretically predicted bunching value is 11 for the
parameters in our experiment. The discrepancy in our observed value of 8.1 can be
attributed to the imperfection in the spectral filtering process. With the separation
of 42(1) MHz, cavities with a linewidth of 20 MHz cannot entirely suppress the
photons from the central peak and the opposite sideband. Therefore, there are some
correlation contributions from different combinations of photons in our experiment,
for example between photons from the central peak and photons from two sidebands.
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Figure 4.15: Second-order nonlinear scattering processes with red-detuned excitation
that result in the emission of photons with frequencies of 2ωL − ω0 and ω0. (a)
Emission of photon with frequency 2ωL − ω0, followed by emission of photon with
frequency ω0. (b) Reverse order.

These would reduce the expected bunching value.
The preferred order of this emission process can be understood qualitatively

through Fig. 4.15. For the red-detuned case, the emission process can happen in
two different ways that include the emission of a photon with frequency 2ωL − ω0

followed by the photon of frequency ω0 and the reverse order. In the emission order
shown in Fig. 4.15(b), this process does not have an intermediate resonance with the
excited state and also involves more virtual states. This causes photon emission in
the reverse order to happen at a much lower rate. Thus, the emission is dominated
by the process in Fig. 4.15(a) which results in the observation of the asymmetry
seen in Fig. 4.14.

4.4 Summary
In this chapter, we described the measurement of the frequency spectrum of

resonance fluorescence emitted by an optically trapped atom at different excitation
intensities, until the emitter is saturated. The distinctive Mollow triplet was observed,
and has been compared to the theoretical model. After taking into account the
effect of the cavity transfer function and laser reflection, our results agree with
the theoretical prediction very well. For each excitation intensity used in the
measurements of the emission spectra, we also record the second-order correlation
function of the atomic fluorescence. The Rabi frequency can be extracted by fitting
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the g(2)(τ) obtained from recorded photoevents and this value serves as a benchmark
for the results obtained in each measured spectrum. These two measurements also
show that we are able to strongly excite the single atom, reaching a saturation
parameter of s ≈ 223.

With the off-resonant excitation, the photons from opposite sidebands have a
preferred order of emission, which is manifested in the asymmetry of the correlation
around τ = 0. Such a preferred time-ordering of the emitted photons from opposite
sidebands could be used to herald narrowband single photons that might find
applications in quantum networks using atoms or atom-like systems as stationary
nodes.
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Chapter 5

Blue-detuned bottle beam dipole
trap

In this chapter, we explore the implementation of a reconfigurable blue-detuned
optical dipole trap using a spatial light modulator. First, we give a brief overview of
the working principle of the blue-detuned optical dipole trap. Next, we construct
the bottle beam trap in a test setup to characterize and compare the beam profile
with the simulation result. We implement the trap into the setup to trap a single
atom. In order to characterize the performance of the bottle beam trap, several
measurements have been done including the lifetime and coherence of the single
atom in the blue-detuned trap. This work is still in progress and more effort is
needed to make the trap work reliably. With a spatial light modulator, it is possible
to reconfigure and scale up the trap to form an atomic array.

5.1 Introduction
Optical tweezers are versatile tool that offers the capability to prepare, trap and

move neutral atoms with ease. However, it is important to keep in mind that the
field that provides the trapping power can have adverse effects such as reduction
of the qubit coherence time. Many studies have been conducted to understand
how light shifts affect the qubit coherence in various experimental configurations,
including strongly focused optical tweezers [66, 82, 133].

In our current setup, we employ a linearly polarized dipole trap that significantly
reduces the atomic motion-induced dephasing. However, this linearly polarized trap
introduces a tensor light shift that causes state mixing and lowers the light-atom
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coupling [46]. We can mitigate this effect by applying a strong magnetic field while
keeping the trap depth as low as possible to minimize the tensor light shift.

Instead of finding ways to overcome the side effect of light shifts, we can use a
different approach to eliminate the light shift completely by utilizing blue-detuned
light. The repulsive nature of blue-detuned light allows for the confinement of the
atoms at the intensity minimum region. In the usual trapping potential formed by
a red-detuned light, the attractive potential for atoms in the ground state will be
repulsive for atoms in the excited state. Especially for atoms in the Rydberg state,
light of all wavelengths is ‘blue-detuned’ to them and will repel the atoms away from
the light field. This is because the highly excited valence electron of the Rydberg
atom acts almost like a free electron and therefore this results in a negative atomic
polarizability. Thus, all the experiments that involve a Rydberg excitation need to
switch off the red-detuned trap during the excitation window to avoid atom loss. By
choosing a proper wavelength where the atomic polarizability is the same for both
the ground and excited states, we can create a trapping potential that is unchanged
for atoms in the two states.

5.2 Theoretical Background
In this section, we will briefly introduce the working principle of the optical

dipole trap following the standard treatment in [134].

5.2.1 Interaction between dipole with external electric field

Consider the situation where an atom is placed within a laser field, the electric
field E will cause separation of charge in the atom, which makes the neutral atom acts
like a dipole. In this case, it becomes a standard problem in electrodynamics where
a dipole interacts with an external electric field. The electric field that oscillates at
angular frequency ω is given by

E(t) = ϵ̂E(e−iωt + eiωt). (5.1)
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Here, E is the field amplitude and ϵ̂ is the unit polarization vector of the field. While
the dipole moment p of the induced atomic dipole can be written as

p(t) = αE(t)

= ϵ̂p(e−iωt + eiωt),
(5.2)

where the amplitude of the dipole moment, p is equal to αE and α is the atomic
polarizability that depends on the driving frequency ω.

The potential of the dipole is given by the time-averaged product of the dipole
moment and the external field

Udip = −1
2 ⟨pE⟩

= − 1
2ϵ0c

Re(α)I,
(5.3)

where I = 2ϵ0c|E|2 is the intensity of the field. By taking the gradient of the
potential, we can obtain the dipole force that acts on the atom

Fdip(r) = −∇Udip(r)

= 1
2ϵ0c

Re(α)∇I(r).
(5.4)

We can see that the atom will feel a dipole force proportional to the laser’s intensity
gradient.

5.2.2 Atomic polarizability

To understand the effect of this force on the atom, we first need to figure out the
value of the atomic polarizability α. Using Lorentz’s model for a classical oscillator,
we get the equation of motion for an electron of mass me and charge −e to be

ẍ+ Γωẋ+ ω2
0x = −eE(t)

me

, (5.5)

where Γω = e2ω2

6πϵ0mec3 is the damping rate when the classical charged oscillator
radiated. By integrating Eqn. 5.5, the polarizability is calculated to be

α = e2

me

1
ω2

0 − ω2 − iωΓω
. (5.6)

Here we substitute Γω into Eqn. 5.6,

α = 6πϵ0c
3 Γ/ω2

0
ω2

0 − ω2 − i(ω3/ω2
0)Γ , (5.7)
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where we define the on-resonance damping rate Γ = (ω0/ω)2Γω.
In the semi-classical model described in Section 4.2.1, this damping rate cor-

responds to the excited state decay rate and is determined by the dipole matrix
element:

Γ = ω3
0

3πϵ0ℏc3 | ⟨g|d|e⟩ |2. (5.8)

5.2.3 Dipole potential

With result from Eqn. 5.7, the dipole potential can be written as

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+ Γ
ω0 + ω

)
I(r). (5.9)

Through the same treatment in Section 4.2.1 where we assume rotating wave
approximation and small detuning (|∆| ≪ ω0), now the dipole potential is simplified
to

Udip(r) = 3πc2

2ω3
0

Γ
∆I(r). (5.10)

From this result, we can see that the atom will experience a potential given by the
distribution of the laser intensity. If the laser is red-detuned with respect to the
atomic resonance (∆ < 0), the negative potential will attract atoms to the intensity
maximum point of the laser. This kind of dipole trap can be easily set up by strongly
focusing a Gaussian beam to create an intensity maximum at the focal point.

A red-detuned dipole trap is sufficient for most applications that do not saturate
the atoms too much. For the same red-detuned light, the polarizability of the excited
state is negative, which results in a positive potential for atoms in the excited state.
When the atoms are strongly saturated, half of the atomic population will experience
a repulsive potential that pushes them away from the trap. As such, even for a
“red-detuned” trap, one needs to calculate the atomic polarizability for the state the
atom is in to know the effect of the trap potential.

In some highly excited states such as the Rydberg states, the valence electron
acts more like a free electron which results in the polarizability of free electron
α = − e2

meω2 [135]. Given that the polarizability is always negative, the atom that is
excited to the Rydberg state will experience a repulsive potential regardless of the
wavelength of the trapping laser. In an experiment that involves Rydberg excitation,
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the red-detuned dipole trap will be turned off temporarily such that the atom will
not get kicked away from the trap.

Other than the trapping potential, one also needs to take into account the photon
scattering rate Γsc, which is given as

Γsc = 1
ℏϵ0c

Im(α)I. (5.11)

The scattering rate is crucial because it affects the heating rate of the atom in the
trap and we wish to keep it as low as possible. Using the same procedure to derive
Eqn. 5.9, the scattering rate can be simplified to

Γsc = 3πc2

2ℏω3
0

(
Γ
∆

)2

I. (5.12)

From Eqn. 5.10 and Eqn. 5.12, we notice that the potential scales with I/∆ while
the scattering rate scales with I/∆2. As such, the optical dipole traps usually operate
at very large detunings and high intensities in order to minimize the scattering while
maintaining a certain potential depth. In our setup, we use a wavelength of 851 nm
for the red-detuned dipole trap which is 25 THz and 32 THz detuned from the D1
and D2 lines of 87Rb, respectively. With the large detuning, we manage to achieve a
trap depth of a few mK through strong focusing of the red-detuned trapping laser.

5.2.4 Blue-Detuned Dipole Trap

Things get a little bit more complicated when the atoms spend most of their time
in the excited state. In a red-detuned dipole trap, the state-dependent potential
might interfere with the experiment by heating up the atoms or causing state
decoherence. On the other hand, blue-detuned light will be repulsive for atoms in
both their ground and excited state. Of course, the blue-detuned light here refers
to light with a frequency higher than the nearby atomic transitions for the state of
interest.

This indicates that we could use blue-detuned light to create a dipole trap
that will maintain a similar potential for atoms in different states. Due to the
repulsive nature of the blue-detuned light, we need to consider the geometry of
the blue-detuned trap. Intuitively, we will need an intensity minimum region that
is surrounded by blue-detuned light to confine the atoms. In contrast to the red-
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detuned case, a zero-order Gaussian beam that is strongly focused will not work as
the intensity minimum simply does not exist.

However, there are various ideas to realize the blue-detuned trap experimentally,
such as the light-sheet trap and hollow-beam trap. For the light-sheet trap, the
laser is focused elliptically to form a sheet of light which can be used as an optical
wall to confine the atom. These light sheets are combined to form a V-shaped
cross-section potential where gravity aid in the vertical confinement by pushing
the atoms to the bottom of the potential [136, 137]. While the geometry of zero
order Gaussian beam does not fulfill the condition to form a blue-detuned trap, the
higher order Laguerre-Gaussian beam in LG0,l mode with l ≥ 1 can provide spatial
confinement in the radial direction. As the center of the beam is hollow along the
propagation direction, there is no barrier to prevent the atoms from moving along
the longitudinal direction. Thus, a pair of plugging beams is applied perpendicularly
to the hollow beam to provide longitudinal confinement [138].

propagation
direction

Figure 5.1: Schematic of generation of bottle beam trap with a Gaussian beam
passing through a phase plate with circular π phase shift in the central part of the
beam. When such a beam is focused down by a lens, the outer and inner regions will
interfere destructively due to the phase shift which results in an intensity minimum
region surrounded by light.

The two methods described above require multiple beams to form a working trap
geometry, which makes it more challenging to maintain a stable potential due to the
relative movement of the laser beams. Ozeri et al. [139] demonstrated a variation
of a hollow-beam trap, where only one laser beam is needed to create a trapping
potential that can provide confinement in all directions. First, a circular π phase
shift is applied to the center part of a collimated Gaussian beam. When such a
beam is focused down by a lens, the phase shift between the outer and inner regions
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will interfere destructively, which results in a dark zone surrounded by light. The
dipole trap with this kind of intensity profile is known as a bottle beam trap. A
bottle beam trap can be generated in several other experimental configurations, such
as Gaussian interference [140, 141], crossed vortex beam [142, 143], and rotating
dipole trap [144].

In our implementation, we will focus on the method that applies a π phase shift
to the central area of the laser beam [139, 145, 146].

5.3 Numerical Simulation of the beam profile
Before we dive right into the implementation part, we numerically simulate the

trap profile to investigate the factor that affects the trapping performance. We
adapt the method in [147] to calculate the field near the focal plane by using Green
theorem.

Consider a closed surface S ′ that encloses a given point r⃗. The electric field at
this point can be computed by [148]

E⃗(r⃗) =
∮
S′

dA′{ikc[n⃗′ × B⃗(r⃗ ′)]G(r⃗, r⃗ ′)+

[n⃗′ × E⃗(r⃗ ′)] × ∇′G(r⃗, r⃗ ′) + [n⃗′ · E⃗(r⃗ ′)]∇′G(r⃗, r⃗ ′)},
(5.13)

where E⃗(r⃗ ′) and B⃗(r⃗ ′) is the electric and magnetic fields on point r⃗ ′ on the closed
surface S ′. Here, n⃗′ is the unit vector normal to the closed surface S ′ and is always
pointing inward. The Green function G(r⃗, r⃗ ′) is given by

G(r⃗, r⃗ ′) = eik|r⃗−r⃗ ′|

4π|r⃗ − r⃗ ′|
. (5.14)

In the far field limit where the distance of point r⃗ from the closed surface is
much larger than the wavelength of the field (|r⃗ − r⃗ ′| ≫ λ), Eqn. 5.13 becomes

E⃗(r⃗) = −2i
∫
Sbf

dA′[n⃗′ · k⃗′]E⃗(r⃗ ′)G(r⃗, r⃗ ′)

+ 2i
∫
Saf

dA′[n⃗′ · E⃗(r⃗ ′)]⃗k′G(r⃗, r⃗ ′),
(5.15)

where k⃗′ is the wave vector of the field on the closed surface. We split the surface S ′

into surface Sbf before the focal plane and surface Saf after the focal plane as shown
in Fig. 5.2. For Sbf, we choose an infinitely large plane surface that coincides with
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Figure 5.2: The choice of closed surface to simplify Eqn. 5.15.

the ideal lens. Hence, the electric field in the first term in Eqn. 5.15 is the laser
field directly after the lens. While for Saf, we can choose it to be a hemisphere with
an infinitely large radius centered at the focus of the lens. This choice will make
the second term in Eqn. 5.15 vanish as n⃗′ · E⃗(r⃗ ′) is zero at all points on Saf. With
this, we can key in the equation and related parameters into a Python program
and compute the resulting field profile. To compute the field profile when different
phases are applied to the input light, we just add a factor of eiϕ(r⃗ ′) to E⃗(r⃗ ′) where
ϕ(r⃗ ′) is the position-dependent phase shift.

Figure 5.3: Simulation results of the normalized intensity profile of a Gaussian beam
focused down by a lens. (Left) Normal Gaussian beam without any phase shift.
(Right) Gaussian beam with an additional circular π phase shift in the central region.
The intensity minimum region is pointed out with a green arrow. In this simulation,
the ratio of the radius of the circular π phase shift to the input beam waist is 0.76.
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The simulation results are shown in Fig. 5.3. The intensity profile in Fig. 5.3(left)
shows a focused Gaussian beam that can be used as a red-detuned dipole trap
where the atoms will be attracted to the intensity maximum region at the focus.
In contrast, Fig. 5.3(right) shows the intensity profile of a bottle beam trap when
an additional circular π phase shift is applied to the central region of the input
Gaussian beam. We can clearly observe a region with minimal intensity.

With this method, we can determine the optimal parameters such as the radius
of circular π phase shift to create a bottle beam trap with better performance.

5.3.1 Optimal π phase shift radius

Intuitively, the profile of the bottle beam will vary with different radii of the
circular π phase shift that is applied to the central region of the input Gaussian
beam. For atom trapping purposes, the intensity at the center of the bottle beam
(z = ρ = 0) should be as small as possible. It is crucial to figure out the optimal
radius of the circular π phase shift that result in a minimum intensity at the center
of the bottle beam. With the method in Section 5.3, we can calculate the intensity
at the focal point (z = ρ = 0) when different radii of the circular π phase shift are
applied to the input beam.

In this particular calculation, we are using parameters from the test setup in
Section 5.4. The input beam has a beam waist of 0.9 mm, and we use an aspheric
lens (Thorlabs AL2520M) with a focal length of 20 mm to focus down the modulated
beam to form the bottle beam. Figure 5.4 shows the the intensity at the focal point
with respect to different ratios of a to w0, where we define a as the radius of the
circular π phase shift and w0 is the input beam waist. The value of a/w0 that results
in minimum focal point intensity is 0.832, in agreement with the value obtained
in [139, 149].

However, it is worth mentioning that the optimal value for a/w0 depends on the
focusing strength. Here, we define the focusing strength as w0/f , where f is the
focal length of the lens. We perform the same calculation as in Fig. 5.4 with the
parameters of our single atom setup to investigate the change in the optimal value
of a/w0. In the actual setup, a beam with 2.71 mm beam waist is focused down
with an aspheric lens of the focal length of 5.95 mm to create the bottle beam. With
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Figure 5.4: The intensity at the center (z = ρ = 0) of the bottle beam trap for
different ratios of a to w0, where a is the radius of the circular π phase shift and
w0 is the input beam waist. In this calculation, we are using parameters from the
test setup in Section 5.4. The intensity reaches a minimum at a/w0 = 0.832. The
intensity here is normalized with respect to the peak intensity of the input Gaussian
beam.

these parameters, the optimization result is shown in Fig. 5.5.
We can see that the value of a/w0 that results in minimum focal point intensity

is 0.77. We attribute the discrepancy between the results in Fig. 5.4 and Fig. 5.5
to the breakdown of paraxial approximation under strong focusing. To understand
this effect quantitatively, we repeat the simulation for different input beam waists
with a constant focal length of 5.95 mm. Through the simulation, the optimal value
of a/w0 at different focusing strengths can be calculated. The result is shown in
Fig. 5.6, and we can see the optimal value for a/w0 decrease for increasing focusing
strength.

The expression in [139, 149] assumes paraxial approximation. This approximation
is reasonable for the case of longer focal length, where the input beam waist is
mainly limited by the aperture of the lens, resulting in smaller focusing strength.
As such, the optimal a/w0 agrees with the expression for the case in the test setup.
With smaller focal length, this approximation breaks down very quickly as larger
focusing strength can be achieved easily. As such, we will use the optimized value of
a/w0 = 0.77 for the experiment in the actual single atom setup.
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Figure 5.5: Graph of center point intensity versus radius of the circular π phase shift
with the parameters of our single atom setup. Here a is the radius of the circular
π phase shift and w0 is the input beam waist. The intensity reaches a minimum
at a/w0 = 0.77. The dotted line shows the result in Fig. 5.4 with 1000 times
magnification in intensity for visual comparison. The intensity here is normalized
with respect to the peak intensity of the input Gaussian beam.
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Figure 5.6: The optimal value of a/w0 at different focusing strength. The focusing
strength is defined as the ratio of input beam waist w0 to focal length f .
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5.4 Trap Profile Characterization
Before directly implementing the bottle beam trap in the single-atom setup, we

constructed a test setup to characterize the profile of this trap. In this section, we will
describe some of the important instruments and present the result of characterization.
The experimental setup is shown in Fig. 5.7.

HWP
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HWP

QWP

50:50

BS beam
block

detector

pinhole
3-axis
piezo

SLM

x

z

focal
plane

aspheric
lens MMF

Figure 5.7: Setup to create and characterize profile of a bottle beam. The laser first
passes through a combination of wave plates and PBS to align the beam polarization
to the SLM crystal axis. The laser is sent head-on to the SLM with a beamsplitter
and subsequently focused down by an aspheric lens (Thorlabs AL2520M, f=20 mm).
To reconstruct the beam profile, we measure the light that transmits through a 1µm
pinhole. By moving the pinhole and the collection optics with a 3-axis piezo, we can
map the beam profile not only on the focal plane but also along the propagation
direction. HWP: half-wave plate, QWP: quarter-wave plate, PBS: polarizing beam
splitter, BS: beam splitter, MMF: multi-mode fiber.

5.4.1 Spatial Light Modulator

To create the bottle beam trap in our experiment, we choose to use a spatial
light modulator (SLM) to apply the desired local phase to the dipole trap laser
beam. The SLM employed here is a liquid crystal device that can manipulate the
spatial phase of a light field reflected off the device. When a voltage is applied to the
anisotropic liquid crystal, its birefringence will change accordingly by re-aligning the
liquid crystal molecules. As such, the liquid crystal will imprint a voltage-dependent
phase shift to the light field. In our experiment, the SLM is an LCD-based reflection
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SLM (P512L) from Meadowlark Optics. It has a spatial resolution of 512×512
pixel with a pitch size of 25×25µm2. Each pixel can be individually controlled to
modify phase up to more than 2π with 16 bits of voltage resolution. Due to the
birefringence property of the liquid crystal, the phase modification only acts on
linearly polarized light that is sent horizontally relative to the SLM. Thus, the laser
first passes through a PBS to clean up the polarization, and the subsequent HWP is
used to adjust the linear polarization with respect to the SLM crystal axis.

There are two common ways to integrate an SLM into an optical setup to perform
phase manipulation. The first method is shown in Fig. 5.7 where the laser is sent
head-on to the SLM with a beamsplitter (BS). In the case of a 50:50 BS, half of the
light will reach SLM, and the modulated light is then split into two beams by the
BS again. As such, we collect only a quarter of the total light power.

The second method involves sending the laser beam onto the SLM at a small
off-axis angle such that the reflected beam is spatially separated from the input
beam. However, the off-axis configuration introduces cross-talk between neighboring
pixels as the beam will pass through different pixels along the propagation direction.
We also need to take into account the elliptical cross-section of a Gaussian beam
impinging on the SLM at an angle and modify the circular π phase shift accordingly.
In the actual setup shown in Fig. 5.12, we use the second method to implement the
bottle beam trap such that we can retain more laser power in forming the trap.

5.4.2 Measurement and Result

To reconstruct the profile of the beam modulated by the circular π phase shift,
we place a 1µm pinhole near the focal plane and measure the transmission through
it. We attach the pinhole and the collection optics onto a piezo-driven motorized
translation stage (P-611.3 NanoCube XYZ Nanopositioner) with a travel range up
to 120µm in xyz direction. By scanning the pinhole across the focal plane, we can
map out the beam profile. We can also repeat this procedure at a different location
along the laser propagation axis to investigate how the beam propagates.

Fig. 5.8 shows the side-by-side comparison of the experimentally observed profile
and simulation results. A good agreement between the simulation and the experimen-
tal data can be seen in the figure. However, the measured trap profile at z = 60µm
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and z = 120µm show asymmetry between the two diagonals.
We suspect that the asymmetry arises due to astigmatism in the optical system.

To confirm our hypothesis, we measure the intensity profile of the laser before and
after the focal plane. The result is shown in Fig. 5.9. The inverted asymmetry shows
that the light propagates along the two diagonal planes has a slightly different focus.

To understand the effect of astigmatism on the trap profile, we measured the
intensity distribution in the x′ − z plane and y′ − z plane where we define the
diagonals in Fig. 5.8 as x′ and y′ axis. From Fig. 5.10(a) and (b), we can observe the
asymmetry in the trap profile with respect to the focal plane (z = 0). Compared to
the simulation result (Fig. 5.10(c)), the measured intensity distribution in the x′ − z

plane (Fig. 5.10(a)) has a v-shape valley that is lower in intensity after the focal
plane (z > 0). The similar feature appears before the focal plane (z < 0) for the
measured intensity distribution in the y′ − z plane (Fig. 5.10(b). This results in a
lower trap potential along the valleys and atoms can escape through these channels.
If this problem persists in the single atom setup, we can apply an additional phase
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Figure 5.8: Intensity profile of the bottle beam trap at different locations along the
beam path. The experimentally observed profile (bottom row) agrees well with the
theoretically calculated profile (top row).
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Figure 5.9: Measured intensity profile of the bottle beam trap before (z = −40µm)
and after (z = 40µm) the focal plane. Astigmatism shifts the focal plane between
the diagonal and anti-diagonal axis.
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of intensity distribution in ρ− z plane.
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on SLM to correct for this aberration.
Next, we also demonstrate the scaling up to multiple dipole traps by uploading

different phases to the SLM. In the first column of Fig. 5.11, a grating phase is
added on top of the circular π phase shift to split the bottle beam trap into two.
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Figure 5.11: Generation of multi bottle beam trap using SLM. The top row shows
the input phase onto the SLM while the second and third rows show the simulated
and experimental measured intensity profile resulting from the corresponding phase.
On top of the circular π phase shift, a grating phase with alternate columns of
zero and π phase shift is added to split the beam into two. The grating period will
determine the splitting distance as seen from the first and second columns. With
additional grating in the horizontal direction, four bottle beam traps can be created
as shown in the last column.
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Intuitively in the case of a physical grating, we can control the splitting distance
by changing the grating period. As we can see in the second column of Fig. 5.11,
smaller grating period results in a larger distance between the two bottle beam
traps. With the flexibility offered by the SLM, we apply an additional grating in the
horizontal direction which will cause the beam to split vertically. This grid grating
phase creates four bottle beam traps as shown in the third column of Fig. 5.11. With
more complex phases, implementation of traps with different spatial configurations
is possible with the usage of the SLM [30].

5.5 Dipole Trap Performance
In this section, we will present the implementation of the blue-detuned bottle

beam trap into the single atom setup. We will characterize the trap properties such
as the lifetime and coherence of the single atom within the trap.

5.5.1 Experimental Implementation

Figure 5.12: Setup for implementing blue-detuned bottle beam trap to trap a single
atom. We sent the blue-detuned laser onto the SLM with a small off-axis angle
to reduce the side effect of this off-axis configuration. With a PBS, we combine
the blue-detuned laser onto the optical axis. The laser passes through the dichroic
mirror and is focused down by the aspheric lens to form the bottle beam trap.
IF: interference filter centered at 780 nm, HWP: half-wave plate, QWP: quarter-
wave plate, PBS: polarizing beam splitter, BS: beam splitter, APD: avalanche
photodetector, SLM: spatial light modulator, B: magnetic field.

In the actual setup shown in Fig. 5.12, the blue-detuned laser is collimated
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with a triplet fiber collimator from Thorlabs to a beam waist of 2.71 mm. This
beam is sent onto the SLM with a small off-axis angle to retain most of the laser
power. As discussed in the Section 5.4.1, this leads to cross-talk between neighboring
pixels and an elliptical cross-section of the beam impinging on the SLM due to the
off-axis angle. To minimize these side effects, we choose a very small off-axis angle
of incidence (≈ 3.2◦). This results in a crosstalk due to an overlap of 0.14µm to the
neighboring pixels given the thickness of the liquid crystal layer is around 2.5µm.
This corresponds to only less than one percent of the 25µm pixel width. The elliptical
cross-section caused by this off-axis angle has a major axis of w0 sec θ ≈ 1.002w0

where w0 is the Gaussian beam waist. Therefore, we conclude that side effects from
off-axis incidence are negligible in our setup.

To minimize the change to our atom trap setup, we inject the blue-detuned laser
into the beam along the optical axis with a PBS. This will reduce the collected
fluorescence in by half, but transmit almost all power of the linearly polarized
trapping laser. This will require a different threshold for detecting the presence of a
single atom in the trap and state detection scheme.

As mentioned in Chapter 2, the blue-detuned trap light originates from the same
Ti:sapphire laser that used to create the red-detuned dipole trap. We tuned the
lasing wavelength from 851 nm to 740 nm, which is blue-detuned with respect to
the D1 and D2 transitions of 87Rb. A distributed feedback laser lasing at 851 nm is
deployed to form a red-detuned dipole trap that replaces the original trap.

We need to estimate the depth of the bottle beam trap to make sure the laser
power is sufficient to capture the atom from the MOT. However, for bottle beam
trap, the estimation of the trap depth is not so straightforward. For a red-detuned
focused-beam trap, the trap depth can be calculated from the maximum intensity
at the focal point. In contrast, for the bottle beam trap, the depth of the trap is
decided by the saddle point located between the radial and axial intensity maxima,
indicated by the red square in Fig. 5.13. For a input laser power of 40 mW and
wavelength of 740 nm, the trap depth is estimated to be around U0 ≃ kB × 3.3 mK
for 87Rb atom. This trap depth is comparable to the red-detuned dipole trap in our
current setup. In reality, the trap depth will be lower due to aberration, but we can
always compensate that with a higher laser power.
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Figure 5.13: Intensity profile of the bottle beam trap along the beam propagation
direction. The red square indicates the saddle region between the radial and axial
intensity maxima.

5.5.2 Lifetime measurement

After setting up the bottle beam trap, we try the same method to trap a single
atom by overlapping the atomic cloud with the focus of the trapping laser. Due to
the repulsive nature of the blue-detuned trap, we will not be able to capture a single
atom if we repeat the trapping procedure of the red-detuned case where the trapping
laser is turned on all the time. Thus, we instead turn on the blue-detuned laser for
20 ms (Fig. 5.14) during the MOT phase and check if a single atom is loaded into
the trap by looking at the fluorescence count. We expect a spike in the collected
fluorescence if a single atom is trapped. If the loading is unsuccessful, we turn off

MOT
beams

Quadrupole

�eld

Blue trap

20ms 20ms50ms

Figure 5.14: Sequence for loading a single atom into the blue-detuned bottle beam
trap.
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the trapping laser for 50 ms so that the atoms from the MOT can reach the trapping
region and turn on the laser again.

However, we did not observe any signal that indicate an atom loading through
this process. We think that this might be due to insufficient atomic density in
the MOT and the small trapping volume of the bottle beam trap that results in
an extremely low loading probability into the intensity minimum region. Further
investigations are needed to make direct loading into the bottle beam trap work.

Instead, we try to solve this problem with an indirect approach where we first
trap a single atom in a red-detuned dipole trap, and then transfer it to the blue-
detuned bottle beam trap. The first part is straightforward. After loading a single
atom into the red-detuned trap and cooling it down with PGC, we first turn on the
blue-detuned trap and subsequently turn the red-detuned trap off.

With this successful indirect loading into the blue-detuned trap, we measure
the lifetime of the single atom in the trap. We hold the atom in the blue-detuned
trap for a certain duration and then transfer the atom back to the red-detuned trap
to check if the atom survives. We can infer the lifetime of the single atom in the
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Figure 5.15: Trapping lifetime of single atoms in the blue-detuned dipole trap
before (blue) and after (red) optimization of the spatial overlap. The solid lines are
Gaussian decay fits that result in a lifetime of 0.133(7) s (blue) and 1.27(8) s (red).
Compare to exponential decay, the Gaussian decay profile results in a better fit for
the data. The error bars reflect the standard error of binomial statistics.
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blue-detuned trap from the survival probabilities at different trapping durations.
In Fig. 5.15, the data in blue shows the first measurement done and the lifetime
extracted from the fit is 0.133(7) s. This lifetime is lower than expected, given the
fact that the scattering from the trapping laser will be minimum at the trapping
region. It turns out that the spatial overlap between the two traps is not optimal,
which results in a motional heating during the trap transfer process. Utilizing the
flexibility offered by the SLM, we can apply phases to the trapping laser to focus,
defocus or to steer the beam in both x and y directions. With this, we can control
the position of the trap in all three dimensions, and optimize the spatial overlap
between the two traps. The red data in Fig. 5.15 show the atom lifetime of 1.27(8) s
in the blue-detuned trap after optimization.
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Figure 5.16: Survival probability of the single atom after multiple trap transfers.
The data in blue is a control experiment where trap transfer is done once. While the
data in red and black are the survival probability of the atoms after going through
trap transfer twice and four times. The lifetime here is lower compared to the
optimal lifetime in Fig. 5.15 as the measurement is taken on different days.

Although such a lifetime is enough for most of the experiments performed in
our setup, it is still shorter than the lifetime in the red-detuned trap by a factor
of two. We suspect that the change in potential results in heating in the atomic
motion. To confirm our hypothesis, we compare the survival probability of the
single atom after experiencing different numbers of trap transfer cycle. The result is
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shown in Fig. 5.16. Here, one complete trap transfer cycle refers to the process of
which the atom is transferred from the red-detuned trap to the blue-detuned trap,
and then back to the red-detuned trap again. Compared to the experimental data
where this trap transfer is only done once, the survival probability of the atom after
multiple trap transfer cycles does not deviate too much. We deduce a trap transfer
probability of around 99% from the red and blue data in Fig. 5.16. This shows that
the trap transfer is very efficient and induces minimal heating such that this process
does not affect the overall survival probability too much.

To further confirm this conclusion, we investigate the heating quantitatively by
measuring the atom temperature. We infer the atom temperature from the release
and recapture measurement, where the dipole trap is switched off for a variable
duration and the recapture probability of the atom by the trap is measured. We
then compare the empirical recapture probability with Monte Carlo simulations to
determine the atomic temperature [150]. For atoms in the red-detuned trap, we find
an atomic temperature of 15.6(3)µK. On the other hand, for the case where the
trap transfer is done once, we measured an atomic temperature of 19.4(4)µK. This
suggests that the trap transfer is not the primary reason for the lower lifetime of
atoms within the blue-detuned trap.

Another possible source of heating that result in lower trap lifetime is the
scattering of the trap photons by the atom. The result in Fig. 2.6 is taken with a
trap depth of kB×2.8 mK, which correspond to a trap scattering rate of 69.5 s−1.
While for the blue-detuned trap, ideally the atom will not scatter any photon if the
atom stay at the intensity minimum region. However, there might be residual light
intensity at the trapping region due to the imperfection in the process of forming
the trap such as aberration. From the measurement in Fig. 5.20, we observed a
residual light shift from the blue-detuned trap and can infer a trap scattering rate
of 2.7 s−1 from it. This proves that the scattering of the trap photons by the atom
in the blue-detuned trap does not induce a serious heating effect onto the atom.

5.5.3 Coherence Characterization

With a reduced light shift experienced by the single atoms, we expect a bet-
ter coherence with the blue-detuned trap. In this section, we choose to use
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the two magnetic-sensitive 52S1/2 Zeeman levels, |F = 2, mF = −2⟩ ≡ |↑⟩ and
|F = 1, mF = −1⟩ ≡ |↓⟩ as our qubit states. As such, we can compare the coher-
ence of the single atoms within the blue-detuned trap with the results obtained in
Chapter 3, where the single atoms are confined in the red-detuned trap.

Similar to the procedure in Chapter 3, we perform PGC and optical pumping to
the atom that has been transferred to the blue-detuned trap. To account for the
difference in light shift experienced by the atom in both traps, the laser frequency
for PGC and optical pumping is adjusted accordingly.
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Figure 5.17: Rabi oscillation between |↑⟩ and |↓⟩ states. The data in red and blue
show the Rabi oscillations undergone by the atom in the red-detuned trap and
blue-detuned trap respectively. The solid line is a fit to an exponentially decaying
cosine function to extract the decay time, τRabi of the oscillation. In the blue-detune
trap, the Rabi oscillation of the single atom shows a decay time, τRabi of 127(10)µs.

First, we prepare the atom in the |↑⟩ state. After this, we use the microwave
field to drive Rabi oscillation between the |↑⟩ and |↓⟩ states. We measure the atomic
state after switching on the microwave field for different durations. For comparison
purpose, this measurement is done in red and blue-detuned trap, respectively. The
result is shown in Fig. 5.17.

We fit the results to an exponentially decaying cosine function to extract both
the Rabi frequency Ωmw and the decay time τRabi of the Rabi visibility. From the fit,
we can obtain a Rabi frequency of Ωmw = 2π × 44.40(7) kHz and a decay time τRabi
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of 127(10)µs for case of blue-detuned trap. Compared to the Rabi oscillation in the
red-detuned trap, the Rabi visibility within the blue-detuned trap decays at a much
faster rate. This indicate that the coherence time of the qubit in the blue-detuned
trap might be lower than in the red-detuned trap.

Next, we apply dynamical decoupling sequence to the single atom qubit to
investigate the qubit coherence quantitatively. For this experiment, the sequence
we choose to apply is the Periodic dynamical decoupling (PDD) sequence used in
Section 3.3. With the measured Rabi frequency, we can infer the pulse duration
required for a π-pulse is 11.26µs. The results for N = 3 and N = 5 are shown in
Fig. 5.18 where N is the number of π-pulses in the sequence. We can extract a 1/e
decay time of 345(32)µs and 440(43)µs for N = 3 and N = 5 π-pulses, respectively.
Compared to the coherence time obtained with PDD sequence in the red-detuned
trap (764µs for N = 3 and 1060µs for N = 5 in Section 3.3), there is a significant
reduction in the qubit coherence in the bottle beam trap.

From the result in Fig. 5.18, we observe a lower initial population in |↑⟩ due to
the reduced Rabi visibility. At zero free evolution time τ = 0, the application of
dynamical decoupling sequence is equivalent as the qubit undergoes Rabi oscillation
of 6π for N = 5 π-pulses. As such, the reduced Rabi visibility results in a initial
population of around 76.8% for the case of N = 5.

Compared to the coherence evolution of the qubit under Periodic DD in Fig. 3.7,
the results in Fig. 5.18 are smoother and do not have any visible recurring dips.
In red-detuned trap, the dips in the coherence evolution occur at frequencies that
correspond to the axial trap frequency due to the atomic motion in the dipole trap.
For the blue-detuned bottle beam trap, we expect an axial trap frequency that is on
the same order of magnitude as the radial trap frequency. The decoherence caused
by the high frequency atomic motion due to the strong axial and radial confinement
is suppressed by the PDD sequence, which results in smooth decay of the qubit
coherence evolution.

Currently, the reason for the lower coherence time in the blue-detuned trap is
still unclear. As mentioned in Chapter 3, the coherence seems to be mainly limited
by fluctuations in magnetic field, causing a change in resonant transition frequency.
Theoretically we would expect similar or better coherence performance given that
light shift due to dipole light vanishes in the blue-detuned trap. More effort is
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Figure 5.18: Coherence evolution of the stretched state qubit under Periodic DD for
N = 3 (top) and N = 5 (bottom) π-pulses in the blue-detuned trap. The solid lines
are fit to a decaying Gaussian to extract their respective 1/e decay time. We extend
the coherence time to 345(32)µs for N = 3 and 440(43)µs for N = 5. Error bars
represent the standard error of binomial statistics.

needed to investigate the deterioration of the qubit coherence.

5.5.4 Transmission Measurement

Previous works in our group focused on characterizing the coupling efficiency
between an optically confined single atom and the strongly focused probe beam.
The 36.6(3)% extinction of a weak coherent field by an optically trapped single
atom has been demonstrated with a 4Pi configuration [41]. Here the extinction, ϵ is
defined as 1-T , where T is the transmission of the probe.

Other than testing the light-atom coupling efficiency in the bottle beam trap, the
transmission measurement is done mainly to determine the light shift experienced
by the trapped atom. The experimental sequence to characterize the light-atom
coupling strength is shown in Fig. 5.19. First, we prepare the atom in 52S1/2

|F = 2, mF = −2⟩ state. In the excitation window, we turn on the probe laser that
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Figure 5.19: Experimental sequence to measure the light-atom coupling efficiency.

drives the closed transition to 52P3/2 |F = 3, mF = −3⟩ for 1 ms. After that, we
pump the atom to the F = 1 state by turning on the MOT cooling beam. This will
decouple the atom from the probe beam. Next, we integrate the probe laser for 1 ms
when the atom is in the dark state for normalization purpose. By repeating this
sequence at different probe frequencies, we can obtain the transmission spectrum
shown in Fig. 5.20.
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Figure 5.20: Transmission spectrum of a weak coherent probe beam through the
single atom confined in different traps. Solid line is a fit to Lorentzian function to
extract the resonant frequency and extinction. Error bars represent the standard
error of Poissonian statistics.
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Within the red-detuned trap, we observe an extinction of ϵred = 21.7(6)% at
detuning δωred = 2π × 32.08(9) MHz with respect to the atomic resonance. When
we perform the same measurement with both traps on at the same time, we see
a small reduction in the extinction (ϵred+blue = 17.0(6)%) with a resonance shift
of δωred+blue = 2π × 31.1(2) MHz. If only blue-detuned trap is on, we record a
similar extinction (ϵblue = 15.9(8)%) with a very small resonance shift of δωblue =
−2π × 1.5(2) MHz. From these measurements, we can infer that the blue-detuned
trap causes a light-shift of around around 1 MHz to 2 MHz.

In the simulation, we find close to zero light-shift at the intensity minimum point.
However, due to the atom movement in the trap, it will experience an effective
light-shift which result from averaging the light-shift according to the atom trajectory
within the trap. An imperfection in the experimental setup such as aberrations also
contribute to this observed light-shift.

5.6 Summary
In this chapter, we have presented the progress towards realizing a blue-detuned

bottle beam trap that could be scaled up to form an atomic array. We started
by describing the principle of an optical dipole trap, and discussed the effect of
light detuning on the trapping potential. By adapting the method in [147], we can
numerically simulate the intensity profile of the bottle beam trap. Using the same
method, we can also determine the optimal radius for the circular π-phase shift that
is used to form the bottle beam trap. In a test setup, we have successfully formed a
bottle beam trap using a SLM. The intensity profile of the resulting trap matches
well with the simulation result, with some slight asymmetry due to aberration. We
also demonstrate the scaling up to multiple dipole traps by applying an additional
grating phase on top of the circular π-phase shift. Next, we incorporated the bottle
beam trap into our single atom setup and discuss the change in the optimal π-phase
shift radius under strong focusing. In the blue-detuned trap, we find a trapping
lifetime that is comparable to the case of red-detuned trap. We measure the Rabi
oscillation and apply periodic dynamical decoupling sequence to the atom. However,
the results show a shorter coherence time and more effort is needed to investigate the
reason. In the final part, we perform transmission measurement to probe the light
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shift experienced by the atom in the blue-detuned trap. While retaining efficient
light-atom coupling, the atom only experiences a light shift of around 1∼2 MHz.
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Chapter 6

Conclusion and Future Work

In this thesis, we have presented the characterization of a light-atom interface
in free space in terms of its ground state coherence and the spectral properties
of the closed optical transition. Utilizing the interaction of the atoms with blue-
detuned light, we have realized a light-shift-free trapping geometry that maintains
the trapping potential experienced by the atoms across different electronic states.

First, we probe the coherence of the magnetically sensitive Zeeman ground
state transition, |F = 2, mF = −2⟩ ↔ |F = 1, mF = −1⟩. This unusual choice of
qubit states is motivated by the existence of the closed optical transition between
52S1/2, |F = 2, mF = −2⟩ to 52P3/2, |F = 3, mF = −3⟩, which opens up the possi-
bility to implement some protocols [1–3] that are originally developed for solid-state
quantum systems in an atomic system. With such motivation, we have presented
a detailed study of the implementation of various dynamical decoupling sequences
to extend the coherence time of our qubit system. In the process of comparing
the performance of several decoupling sequences such as the Uhrig sequence and
Carr–Purcell–Meiboom–Gill sequence, we observe an improvement in the coherence
time T2 by two orders of magnitude from T ∗

2 . Through a deeper understanding of
the applied sequence, we could map out the spectrum of the noise experienced by the
qubit by interpreting the decoupling sequence as a noise filter. Finally, optimization
on the sequence with 5 π-pulses reveals the ideal sequence for our qubit system,
which matches the Carr-Purcell sequence.

Previous efforts in our group mainly focus on interfacing the single atom with a
single photon or incoming excitation at the weak field limit for a small saturation
parameter s ≪ 1. An extinction of 36.6(3)% by an optically trapped single atom has

102



CHAPTER 6. CONCLUSION AND FUTURE WORK

been observed with a 4Pi configuration [41]. Moving on from the investigation on
light-atom coupling efficiency, we presented a detailed study on the atomic emission
in terms of its spectral properties and photon statistics under different excitation
conditions. By exciting a closed transition that resembles an ideal two-level system
to the saturation regime, we managed to observe the Mollow triplet in the frequency
spectrum of the atomic fluorescence from a single atom. For each experimental
setting, we also measure the second-order correlation function of the fluorescence
where the Rabi frequency can be extracted. This value serves as a reference to
cross-check with the frequency splitting we observed in the measured spectrum. We
achieve a Rabi splitting of 2π×64 MHz, which corresponds to a saturation parameter
of s ≈ 223. Under off-resonant excitation, we isolate the photons from opposite
sidebands using Fabry-Perot cavities and investigate the correlation of their arrival
time. The asymmetry in the g(2)(τ) reveals the preferred time-ordering of the
emitted photons from the different sidebands. Such time-correlated photon pairs
with tunable frequency and narrow bandwidth could be used as a heralded single
photon source in applications involving atomic systems.

In the last part of this thesis, we explore the possibility to engineer a blue-detuned
bottle beam dipole trap by using a spatial light modulator. The flexibility to imprint
different spatial phase profiles onto the laser offers us an alternative to scale up the
number of traps to form an atomic array. We have successfully characterized the
intensity profile of a bottle beam trap. The result agrees well with the simulation.
By applying grating phase in both 1D and 2D cases, we show the scaling up to
multiple dipole traps in this configuration. We also demonstrate the capability of our
bottle beam trap in retaining a single atom with a comparable lifetime to the case of
a red-detuned focused-beam trap. However, the coherence within the blue-detuned
trap does not show expected behaviour and more investigation is needed in future.
In the transmission measurement, the atom confined in the bottle beam trap shows
similar efficient light-atom coupling, while experiencing only a light shift of around
1∼2 MHz. This shows that this approach of realizing an atom-light interface offers us
scalability while having a high light-atom interaction strength and similar potential
for atom in different electronic states.

Future works could also include the possibility to generate quantum light from
our qubit system. As mentioned in Chapter 3, we can apply protocols in [2, 3]
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Figure 6.1: Possible level scheme for generation of photonic cluster state. Grey
arrows indicate the undesired decay that stop the generation of the cluster state.

that were originally designed for quantum dots to generate entangled photonic
strings. One possible way is to replace the two transitions in this proposal with
5S1/2, F = 2, mF = −2 ↔ 5P3/2, F = 3, mF = −3 and 5S1/2, F = 1, mF = −1,
↔ 5P3/2, F = 0, mF = 0 (Fig. 6.1), where a spin flip can be performed between the
two ground state Zeeman levels. Of course complications arise due to the fact that
the second transition is not closed and the atom might escape to other levels which
halts the generation of a photon chain. While a recent experiment [151] show the
generation of entanglement using the correlation of the photons originated from the
opposite sidebands of Mollow triplet, it is worth to explore other ways using this
correlation as a useful quantum resources.

In order to scale up our system to include more qubits, we also need to upgrade
the detector to a camera for higher spatial resolution. In our current setup, we only
have the ability to confirm the existence of two atoms in two separate traps. This is
done by aiming two single photon detectors at one of the two atoms from both sides
of the lenses. With the installation of a camera and additional SLMs for the optical
pumping or probe beam, individual site addressing and detection can be achieved.
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