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Abstract

Ultrabright narrowband bunched light

by

Yeo Xi Jie

Doctor of Philosophy in

National University of Singapore

Bunched light finds applications in areas such as imaging, clock synchronisation
and optical ranging. These applications leverage on the temporal bunching of
photons to extract timing information, similar to more “quantum” light sources,
such as light from spontaneous parametric down conversion or from spontaneous
emission.

This thesis describes experimental techniques to develop and characterise an
ultrabright source of narrowband bunched light. The characterisation techniques,
which are an extension to the work by Lebreton et al. [1, 2], are based on photon
correlations between light from two output ports of an asymmetric Mach-Zehnder
interferometer. Our techniques can be used to extract parameters such as the
fraction of coherent light emitted by a source [3], the coherence time of a light field,
and also to determine if photon bunching originates from phase fluctuations. These
techniques are applied to various light sources such as lasers operating at different
currents, emission from a mercury discharge lamp, laser light scattered off a rotating
ground glass plate and new ultrabright bunched light source developed in this thesis.

Our ultrabright narrowband bunched light source is realised by superposing
light from a continuous wave laser with itself beyond its coherence time, using an
asymmetric Mach-Zehnder interferometer. Light from this source has a coherence
time of ∼ 190 ns. The mechanism of photon bunching can be attributed to phase
fluctuations in the input laser, which are typically ascribed to quantum noise. From
second-order photon correlations g(2)(τ), the photon bunching amplitude is measured
to be g(2)(0) = 1.437 ± 0.002. At an output power of 1 mW, the bunched light has
a spectral density of 1022 photons per second per nanometer linewidth, about 104

times higher than the best existing similar sources known to us [4]. This allows
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for attenuation as much as 140 dB by the propagation media before the signal is
comparable to noise in the single photon detectors. The brightness can be easily
increased with a higher power laser input, and is only limited by the damage
threshold of the optics.
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Chapter 1

Introduction

Photon bunching is a remarkable phenomenon where one observes a higher
probability of registering photodetection events close together in time than far
apart [5]. This non-uniform probability distribution can be observed from second-
order photon correlations, extracted from correlating the mean photon number N(t)
detected from a light source at some time interval [t, t + δ), with the mean photon
number N(t + τ) at another time interval [t + τ, t + τ + δ), with these two intervals
separated by a time difference τ . Formally, this is defined as

g(2)(τ) = ⟨N(t)N(t + τ)⟩
⟨N(t)⟩ ⟨N(t + τ)⟩ , (1.1)

where ⟨. . . ⟩ indicates an ensemble averaging over all t. Here, photon bunching shows
up as g(2)(0) > 1, and decays to 1 as the magnitude of the timing difference ∥τ∥
increases.

Light exhibiting photon bunching can also be referred to as bunched light [6].
Examples of bunched light sources include stars [7–9], discharge lamps [10–13],
scattering of light off particles [14–17] and rotating ground glass [18–25], superlu-
minescent diodes [26], pulsed lasers [27], laser amplifiers [28], lasers operating at
subthreshold [4], spontaneous parametric down conversion in nonlinear crystals [29–
33] and atomic vapours [34].

Recently, bunched light finds applications in sensing, such as imaging [35–37],
ranging [4, 38, 39], and clock synchronisation [40, 41]. These applications leverage
on the photon bunching property from which timing information can be extracted,
such as the time-of-flight of the photons.

Among the bunched light sources applied to sensing, there is a growing interest
in sources where photon bunching specifically originates from quantum processes [4,
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CHAPTER 1. INTRODUCTION

37, 39–41]. Examples of these quantum processes include spontaneous emission [42],
where a photon is produced by the radiative decay of an emitter, and spontaneous
parametric down conversion [43, 44], where a single photon is converted to multiple
photons via a nonlinear optical medium. Due to the indeterminacy of quantum
mechanics, these processes occur in a manner considered to be “truly” random [45].
This contrasts with pseudo-randomness where the apparently random sequence
generated this way can be accurately predicted if the mechanism or algorithm to
generate the sequence is identically replicated.

Applied to sensing, the “true” random occurrences of photon bunching from
quantum processes can be leveraged upon as a natural means to suppress cross-
talk, even between identically constructed sources. Specifically, a photon bunching
signature would be observed when correlating detection events of photons originating
from the same light source, and would not be observed when correlating detection
events of photons originating from different light sources. This enables a clearer
distinction between signals when using identically constructed sources in proximity.

Despite the benefits of cross-talk suppression, sensing techniques using such
bunched light sources are limited by a minimum measurement time. This can be
interpreted as the time needed to register enough photodetection events for clear
observation of photon bunching at some level of statistical confidence. Especially
crucial in time-sensitive applications such as the detection of transient events and
the observation of dynamic processes, the minimum measurement time has to be
significantly shorter than the timescales of these events and processes. To achieve
a short measurement time, two properties of the bunched light source need to be
optimised: high output brightness and a large photon bunching amplitude.

A high output brightness of the bunched light source is necessary in sensing
applications to withstand channel losses in the propagation media, and if applicable,
scattering losses from a target of interest. This ensures sufficient illumination of the
detectors by the bunched light source for an appreciable photodetection rate after
losses.

On the other hand, the photon bunching amplitude contrasts the detection of
photoevents originating from bunched light close together in time against “accidental”
photoevents close together in time. However, in general, there are no straightforward
ways of increasing the photon bunching amplitude, although there are recent works
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suggesting methods via amplitude modulation of light [46–48]. Even so, amplitude
modulation techniques would not apply to bunched light sources with photon
bunching from quantum effects, as it involves an additional source of modulation,
defeating the purpose of using the bunched light for its intrinsic randomness.

The bandwidth of the bunched light also affects the minimum measurement
time required to resolve the photon bunching. Typically, the bandwidth of a
bunched light source is inversely proportional to the characteristic timescale of
photon bunching [5, 6]. In other words, a broadband bunched light source has a
short characteristic timescale of photon bunching. When this timescale is short
compared to the temporal resolution of the photodetectors, the convolution of the
photon bunching signature with the temporal response of the detectors results in a
reduction in photon bunching amplitude observed [49]. Consequently, the reduced
photon bunching amplitude requires more photodetection events before it can be
confidently resolved. Following this reasoning, a sufficiently narrowband bunched
light is needed for a correspondingly long characteristic timescale of photon bunching
which circumvents the reduction in photon bunching amplitude due to convolution
with temporal response of the detectors.

Thus, the bandwidth and output brightness are the actual limitations to the
sensing application. These two parameters can be jointly characterised by the
spectral density of the light source, with a high spectral density being desirable here.
The discussion thus far motivates for techniques to construct bunched light sources
with high spectral density and photon bunching originating from quantum effects
for more demanding sensing applications.

Thesis outline
In this thesis, we describe experimental techniques to develop and characterise

an ultrabright source of narrowband bunched light. Our bunched light source is
realised by superposing light from a continuous wave laser with itself beyond its
coherence time, using an asymmetric Mach-Zehnder interferometer. This utilises the
intrinsic phase fluctuation in the laser, commonly attributed to quantum noise from
the uncertainty in the energy of the light and its emitter [50], to achieve the photon
bunching. Following this argument, we ascribe the photon bunching to quantum
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CHAPTER 1. INTRODUCTION

noise. On the other hand, the brightness and the narrow bandwidth of the input
laser makes the photon bunching easily resolvable even with slow detectors. Prior to
its demonstration as a bunched light source, this technique was used as a method to
generate random intensity spikes as part of a quantum random number generator [51,
52].

To characterise the bunched light source, we develop techniques to extract
parameters such as the fraction of coherent light emitted by a laser, the coherence
time of the light, and also to determine if photon bunching originates from phase
fluctuations. These characterisation techniques, which are extensions of the work
by Lebreton et al. [1, 2], are based on the correlation of photoevents detected at
the output ports of an asymmetric Mach-Zehnder interferometer. We present an
overview of these correlations, referred to as interferometric photon correlations
g(2X)(τ), in Chapter 2.

We extended the use of interferometric photon correlations g(2X)(τ) in Chapter
3 to develop a technique to measure the fraction of coherent light emitted by a laser
source which determines the maximum photon bunching amplitude achievable by the
ultrabright bunched light source. Using interferometric photon correlations g(2X)(τ),
we are also able to measure the coherence time of the coherent light emitted by the
laser.

In Chapter 4, we use interferometric photon correlations g(2X)(τ) to determine if
photon bunching is related to the phase fluctuations in a bunched light source. To do
this, we directly observe the difference between the second-order photon correlation
g(2)(τ) and the interferometric visibility ∥g(1)(τ)∥ of a light source which appears
around τ = 0 in its interferometric photon correlation g(2X)(τ). Using this technique,
we report our findings that the photon bunching observed from laser light scattered
off a rotating ground glass plate is not purely from its phase fluctuations. In contrast,
from the interferometric photon correlation g(2X)(τ) of the green emission from a
mercury discharge lamp around 546 nm, its photon bunching effect appears to be
related to its phase fluctuations. Therefore, the emission from the mercury discharge
lamp is indeed a source of thermal light, as demonstrated in many past experiments.

In Chapter 5, we present our bunched light source, where we reach a bunching
amplitude of g(2)(0) = 1.437 ± 0.002, which is close to the predicted value of
g(2)(0) = 1.44 from the fraction of coherent light emitted by the input laser. At
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an output power of 1 mW, this light source has a spectral density of about 1022

photons/sec/nm, making it 104 times brighter than the brightest bunched light
known to us, which is based on a laser operating below its lasing threshold [4]. From
its interferometric photon correlation g(2X)(τ) , the photon bunching effect appears
to be related to the phase fluctuations of the laser, which can be attributed to
quantum noise [50]. We conclude the thesis with the summaries and outlook from
these experiments in Chapter 6.
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Chapter 2

Interferometric photon correlations

To characterise the bunched light source, we require techniques to characterise
its coherence time, and fraction of coherent light emitted, as well as a method to
determine if the photon bunching is related to the phase fluctuations. To measure
coherence time, a common technique is to use a scanning Michelson or Mach-Zehnder
interferometer. For the lasers we use in our experiments, they have a bandwidth on
the order of MHz, corresponding to a coherence time on the order of 100 ns. Using a
scanning interferometer to extract the coherence time of these lasers would require
scanning a path length on the order of 100 m, which may be challenging on the
length scale of a laboratory.

On the other hand, to measure the fraction of coherent light, second-order photon
correlations, which measures the timing separation of photons from a source, may
be used [53–57] This would require spectral filtering if there is a mixture of coherent
with broadband thermal light [58], which would fail to characterise the full emission
of a laser [3]. Hence, we require alternative techniques for these characterisations.

To characterise our light sources, we use and develop techniques that are based
on interferometric photon correlations g(2X)(τ). Interferometric photon correla-
tions g(2X)(τ) developed by the group of Lebreton et al. [1], are timing correla-
tions extracted from photoevents detected at the output ports of an asymmetric
Mach-Zehnder interferometer, and contains both features of second-order photon
correlations g(2)(τ) and interferometric visbility

∥∥∥g(1)(τ)
∥∥∥. It was previously used

to distinguish an incoherent light source from a coherent light source undergoing
amplitude modulation [2]. Similar techniques featuring the sending of light through
an asymmetric Mach-Zehnder interferometer were used to study organic molecules
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light

source

delay

fiber

Figure 2.1: Setup to determine the interferometric photon correlation g(2X)(τ).
Light from the source under test is sent through an asymmetric Mach-Zehnder
interferometer, formed by two optical path from two output ports, indexed as A
and B. At each output port, photoevents are detected using single-photon detectors
(SPD), where photodetection events are timetagged. A correlation between detection
timings would extract interferometric photon correlations g(2X). For high enough
power, conventional PIN photodiodes may replace the single-photon detectors, and
its time-varying power recorded by an analog to digital converter.
BS: Beam splitter

in a solid matrix undergoing spectral diffusion [59], and to characterise the phase
noise of a laser [60]. In this Chapter, we provide an introduction to interferometric
photon correlations.

A schematic setup to extract interferometric photon correlations is shown in
Figure 2.1. The light source under test has an electric field E(t) that is sent through
an asymmetric Mach-Zehnder interferometer. When light enters the interferometer,
a beamsplitter divides the beam into two propagation modes of equal intensity.
Each mode then propagates through individual paths of different length before
spatially overlapping again at a second beam splitter. The path difference creates a
propagation delay ∆ between the two light fields before recombining on a second
splitter and is significantly longer than the coherence time τc of the light source. With
the long propagation delay, the interfering fields E(t) and E(t + ∆) are uncorrelated
in time when they spatially overlap at a second beamsplitter, i.e.

⟨E∗(t)E(t + ∆)⟩ = 0, (2.1)

where ⟨. . . ⟩ denotes the expectation value of the terms enclosed over the variable t.
The resultant light fields at the output ports A, B of the interferometer are

EA,B(t) = E(t) ± E(t + ∆)√
2

, (2.2)
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with a sign difference due to the π phase difference acquired by one of the fields at
the beamsplitter where the two fields recombine [61].

In general, the intensity of the light field at each output IA,B(t) = E∗
A,B(t)EA,B(t)

are measured and correlated. To extract interferometric photon correlations

g(2X)(τ) = ⟨E∗
A(t)E∗

B(t + τ)EB(t + τ)EA(t)⟩
⟨E∗

A(t)EA(t)⟩⟨E∗
B(t)EB(t)⟩ . (2.3)

If single-photon detectors are used to measure the intensity at each output port A, B

of the interferometer, photoevents are detected over an integration time T with the
detection timings logged by the time tagger. The number of “single” photoevents
detected at each detector at output port A, B over the measurement time T , is
denoted by SA,B respectively. To extract interferometric photon correlations g(2X)(τ),
we compute the timing difference between photodetection timings pairwise, and
count the number of pairs, referred to as coincidences C(τ), that are within a timing
difference interval of [τ, τ + δ), where δ is the size of each timing interval. We assume
the coincidences C(τ) in each time interval follows a Poissonian distribution, so we
assign an error

√
C(τ) to the measured coincidences C(τ) in each time interval.

The mean coincidence rate within each timing difference interval, C(τ)δ/T , is
then normalised by the product of the mean photoevents rate at each detector

g(2X)(τ) = C(τ)δ/T

(SAδ/T ) (SBδ/T )

= C(τ) T

SA SB δ
.

(2.4)

This method of extracting photon correlations from timestamps can also be used to
extract second-order photon correlations g(2)(τ), but with a different optical setup,
shown in Figure 2.2.

Alternatively, for light emerging from the interferometer with sufficiently high
optical power, the time-varying power PA,B(t) at each output port A, B of the
interferometer can be measured with conventional PIN photodiodes, instead of single
photon detectors, and recorded with an oscilloscope. The sampling discretises the
time-varying power to PA,B(tm) with a step size of δ, so tm = mδ. The interferometric
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light

source

Figure 2.2: Variations of setups used to extract second-order photon correlations
g(2)(τ) in this Thesis. (a) conventional Hanbury-Brown Twiss type configuration (b)
Hanbury-Brown Twiss type interferometer by disconnection or obstruction to one arm
of an asymmetric Mach-Zehder inteferometer in a setup to extract interferometric
photon correlation g(2X)(τ). In both cases, light from the source under test is
sent to a beam splitter (BS) which splits the light field into two output ports. At
each output port, photoevents are detected using avalanche photodiodes (APD),
where detection timings are logged by a timestamp unit. A correlation between
detection timings similar to the method described to extract interferometric photon
correlations g(2X)(τ) in Equation 2.4.

photon correlation can then be evaluated from PA,B(tm):

g(2X)(τ) =
∑l PA(tl)PB(tl + τ) δ/T

(∑m PA(tm)δ/T ) (∑n PB(tn + τ)δ/T )

=
∑l PA(ti)PB(tl + τ)∑m PA(tm)∑n PB(tn + τ)

T

δ

(2.5)

For readability and consistency, we analyse the interferometric photon correlations
g(2X)(τ) in terms of electric fields for the remainder of this thesis. The results are
the same when using quantum mechanical operators of the light field [62].
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2.1. COHERENT AND THERMAL LIGHT

Using Equation 2.2, g(2X)(τ) can be expanded into several terms:

g(2X)(τ) = 1
4[⟨E∗(t)E∗(t + τ)E(t + τ)E(t)⟩

+ ⟨E∗(t + ∆)E∗(t + τ + ∆)E(t + τ + ∆)E(t + ∆)⟩

+ ⟨E∗(t + ∆)E∗(t + τ)E(t + τ)E(t + ∆)⟩

+ ⟨E∗(t)E∗(t + τ + ∆)E(t + τ + ∆)E(t)⟩

− ⟨E∗(t + ∆)E∗(t + τ)E(t + τ + ∆)E(t)⟩

− ⟨E∗(t)E∗(t + τ + ∆)E(t + τ)E(t + ∆)⟩] ,

(2.6)

where we omitted terms in the expansion with an unequal number of fields and
conjugates containing ∆, as these terms average out to zero when computing
their expectation values. For easy normalisation, we have also assumed that
⟨E∗

A(t)EA(t)⟩ = ⟨E∗
B(t)EB(t)⟩ = ⟨E∗(t)E(t)⟩ = 1 in the denominator of Equa-

tion 2.6.
The terms in Equation 2.6 can be simply written in terms of the interferometric

visibility ∥∥∥g(1)(τ)
∥∥∥ =

∥∥∥∥∥⟨E∗(t)E(t + τ)⟩
⟨E∗(t)E(t)⟩

∥∥∥∥∥ (2.7)

and second-order photon correlations

g(2)(τ) = ⟨E∗(t)E∗(t + τ)E(t + τ)E(t)⟩
⟨E∗(t)E(t)⟩⟨E∗(t)E(t)⟩ . (2.8)

The first two terms in Equation 2.6 equal to second-order photon correlations
g(2)(τ), the middle two terms equal to second-order photon correlations g(2), time-
shifted by −∆ and +∆, respectively, and the last-two terms equal to interferometric
visibility-square

∥∥∥g(1)(τ)
∥∥∥2

. Therefore, we rewrite Equation 2.6

g(2X)(τ) =1
4
[
g(2)(τ + ∆) + g(2)(τ − ∆)

]
+ 1

2

[
g(2)(τ) −

∥∥∥g(1)(τ)
∥∥∥2
]

.
(2.9)

2.1 Coherent and thermal light
To illustrate the characteristic features in interferometric photon correlations

g(2X)(τ), we show theoretical traces in Figure 2.3 for coherent and thermal light
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Figure 2.3: Theoretical interferometric photon correlations g(2X)(τ) for thermal light
(top, red), a mixture of thermal and coherent light (middle, green) and coherent
light (bottom, blue). The horizontal axis is represented in terms of multiples of the
characteristic timescale of the light τc. We have used a propagation delay ∆ = 5 τc

in these plots. The plots were vertically offset by 0.2 for the top plot and 0.1 for the
middle plot for clarity.

with Lorentzian spectral lineshapes as an example. Here, we have assumed that the
detectors used have a timing resolution shorter than the characteristic timescale τc

of the light source, which allows the “bunching” and dip signatures to be resolved.
However, for a limited timing resolution, these features would flatten due to a
convolution with the detector’s response [49].

As a light source’s interferometric visibility ∥g(1)(τ)∥ is the Fourier transform
of its lineshape, light sources with a Lorentzian spectral lineshape would have a
corresponding ∥g(1)(τ)∥ with an exponential decay profile [63, 64],∥∥∥g(1)(τ)

∥∥∥ = e−∥ τ
τc

∥, (2.10)

where τc is a characteristic time constant inversely related to the spectral linewidth.
For thermal light, such as light from an ensemble of emitters undergoing sponta-

neous emission, the Siegert relation [65] connects the second-order photon correlation
g(2)(τ) to the interferometeric visibility ∥g(1)(τ)∥:

g(2)(τ) = 1 +
∥∥∥g(1)(τ)

∥∥∥2
. (2.11)
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2.2. COMPARING g(2)(τ) AND ∥g(1)(τ)∥2

We present a derivation of the Siegert relation in Section 4.1. Using this relationship,
the second term in Equation 2.9 equals to 1, resulting in

g(2X)(τ) = 1
2 + 1

4
[
g(2)(τ + ∆) + g(2)(τ − ∆)

]
. (2.12)

As shown in Figure 2.3 top, the plot is constant at g(2X)(τ ≈ 0) = 1, with two
“bunching” signatures centred around the propagation delay τ = ±∆, where we have
used ∆ = 5 τc. The peaks of these “bunching” signatures are g(2X)(±∆) = 1.25,
assuming an ideal thermal light g(2)(0) = 2.

For coherent light, the second-order photon correlation is g(2)(τ) = 1, which
results in a corresponding interferometric photon correlation

g(2X)(τ) = 1 − 1
2
∥∥∥g(1)(τ)

∥∥∥2
. (2.13)

Figure 2.3, bottom, shows this dip feature centered around τ = 0, with its lowest
point at of g(2X)(0) = 0.5.

We expect the second-order photon correlation g(2X)(τ) for a mixture of thermal
and coherent light to look similar to Figure 2.3 middle. The features of interferometric
photon correlation g(2X)(τ) are expected to have a reduced dip amplitude 0.5 <

g(2X)(0) < 1, and the “bunching” signatures at τ = ±∆ to have a reduced height.

2.2 Comparing g(2)(τ ) and ∥g(1)(τ )∥2

The photon bunching of a light source is characterised by second-order photon
correlations g(2)(τ), while the phase fluctuations of the light source can be charac-
terised by its interferometeric visibility ∥g(1)(τ)∥. Therefore, a comparison between
second-order photon correlations g(2)(τ) and the interferometeric visibility ∥g(1)(τ)∥
sheds insights on the relationship, if any, between the phase fluctuations of the light
source and its photon bunching.

The difference between a light source’s interferometeric visibility ∥g(1)(τ)∥ and
second-order photon correlation g(2)(τ), shows up as a feature around τ ≈ 0 in
interferometric photon correlations g(2X)(τ), allowing a direct comparison between
the two. Therefore, by observing the features around τ ≈ 0 in interferometric photon
correlations g(2X)(τ), we make comparisons of the temporal profile and timescales
between phase fluctuations and photon bunching.
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Figure 2.4: Theoretical interferometric photon correlations g(2X)(τ) with different
(a) amplitudes, (b) timescales and (c) temporal profiles between second-order photon
correlation g(2)(τ) and interferometeric visibility-square ∥g(1)(τ)∥2. (a) Amplitude
g(2)(0) − 1 that is 2 times (top,blue) ∥g(1)(0)∥2 and Amplitude g(2)(0) − 1 that is
0.5 times ∥g(1)(0)∥2 (red,bottom). (b) Characteristic timescale of g(2)(τ) that is
0.5 times longer (top,blue)/ shorter (red,bottom) compared to the timescale of
∥g(1)(τ)∥2. (c) Same timescale and amplitude, but g(2)(τ) is a Gaussian profile and
∥g(1)(τ)∥2 is a two-sided exponential decay (top,blue), and vice-versa (red,bottom).
For clarity, the top, blue and bottom, red plots have been offset vertically by ±0.15
respectively. We have used a propagation delay ∆ = 5 τc in these plots.
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2.2. COMPARING g(2)(τ) AND ∥g(1)(τ)∥2

For second-order photon correlation g(2)(τ) and interferometeric visibility ∥g(1)(τ)∥
with the same temporal profile and timescale but different amplitudes, the difference
between the two is linear sum of two distributions with the same temporal profile
and timescale, which can be factored out, equating to a constant term plus a scalar
multiple of the temporal profile. Correspondingly, this shows up as a unimodal
distribution the interferometric photon correlations g(2X)(τ) around τ ≈ 0, as shown
in Figure 2.4(a). Furthermore, when the amplitudes of interferometeric visibility
∥g(1)(τ)∥ and second-order photon correlation g(2)(τ) are the same, these two func-
tion cancels out exactly, leaving behind a constant. Therefore, the corresponding
interferometric photon correlations g(2X)(τ) around τ ≈ 0 would be a constant
function, with an example being thermal light in Fig 2.4 top.

However, when the second-order photon correlation g(2)(τ) and interferometeric
visibility-square ∥g(1)(τ)∥2 do not have the same temporal profile or timescale, there
would be a residual difference g(2)(τ)−∥g(1)(τ)∥2. This shows up in the interferometric
photon correlations g(2X)(τ) as a bimodal distribution centered around τ = 0. We
show in Figure 2.4(b), the interferometric photon correlations g(2X)(τ) in scenarios
where the second-order photon correlation g(2)(τ) and interferometeric visibility-
square ∥g(1)(τ)∥2 have different timescales, and in Figure 2.4(c), when they have
different temporal profiles.

Summary

We have established the theoretical fundamentals of measuring interferometric
photon correlations g(2X)(τ), where photon or intensity correlations between the two
output ports of an asymmetric Mach-Zehnder interferometer were extracted. We
showed some theoretical examples of interferometric photon correlations g(2X)(τ) for
coherent and thermal light, and predicted the interferometric photon correlation
g(2X)(τ) for an arbitrary mixture of coherent and thermal light. However, a rela-
tionship between interferometric photon correlation g(2X)(τ) and the proportion of
coherent light in a mixture has not been previously established. In Chapter 3, we
present our method of measuring this proportion using interferometric photon corre-
lations g(2X)(τ), and also use it to extract the characteristic timescale of the coherent
light’s interferometric visibility ∥g(1)(τ)∥ to extract its frequency bandwidth.
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CHAPTER 2. INTERFEROMETRIC PHOTON CORRELATIONS

We also showed how interferometric photon correlations g(2X)(τ) compare the
second-order photon correlation g(2)(τ) and interferometric visibility-square ∥g(1)(τ)∥2.
A unimodal distribution in interferometric photon correlations g(2X)(τ) around τ ≈ 0
indicates a similar temporal profile between second-order photon correlation g(2)(τ)
and interferometric visibility ∥g(1)(τ)∥, whereas if they differ in temporal profile or
characteristic timescales, a multimodal distribution would be seen.

The interferometric visibility ∥g(1)(τ)∥ characterises the phase fluctuations in a
light source, while second-order photon correlation g(2)(τ) characterises the photon
bunching phenomenon. Therefore, the difference between ∥g(1)(τ)∥ and g(2)(τ) that
is directly compared in interferometric photon correlations g(2X)(τ) near τ ≈ 0
can be used to infer if the photon bunching phenomenon is related to the phase
fluctuations. We shall apply this technique to the light sources presented in Chapter
4 and 5.
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Chapter 3

Characterising the emission of a
laser

In the search of bright sources of bunched light, we have a closer look to lasers.
In principle, lasers mostly emit coherent light that shows no photon bunching and
have an extremely high spectral brightness. Thus, it is appealing to develop methods
that can generate bunched light using laser light as an input, while maintaining its
spectral brightness.

In reality, lasers may not emit fully coherent light, and may contain residual
broadband incoherent light, or emits into multiple longitiudinal modes which are
incoherent with respect to each other. Using lasers with such features to generate
bunched light may influence some parameters of the bunched light such as the photon
bunching’s characteristic timescale or amplitude. Thus, some characterisation of
the laser emission is necessary, in particular, the fraction of its emission that is
contributed by coherent light, and the coherence time of the laser.

To characterise the fraction of coherent light, an approach may be via second-
order photon correlations g(2)(τ), which was used to observe the transition to
lasing in lasers [53–57]. However, second-order photon correlations g(2)(τ) does
not distinguish coherent light from broadband incoherent light well, as both shows
g(2)(0) ≈ 1. Spectral filters may be used to distinguish between incoherent and
coherent light, but light outside the filter transmission window is discarded. This
limits the full characterisation of the emission.

On the other hand, a common way of measuring coherence time is by sending
the light through a scanning Michelson or Mach-Zehnder interferometer. As the
bandwidth and coherence time are inversely related, lasers typically have bandwidths
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CHAPTER 3. CHARACTERISING THE EMISSION OF A LASER

on the order of MHz, with a corresponding coherence time on the order of 100 ns. If
traditional techniques to measure coherence times are used, a scanning path length
on the order of 100 m is needed. Scanning through such distances is unfeasible in a
typical laboratory.

Towards constructing a bunched light source from a laser, methods to characterise
the emission from a laser are necessary. In this Chapter, we present a technique to
quantify the fraction of coherent light emitted by a laser diode [3], using interfero-
metric photon correlations g(2X)(τ). The coherence time and frequency bandwidth
of the emission may also be extracted from the interferometric photon correlation
g(2X)(τ).

3.1 Connecting coherent light fraction to g(2X)(τ )

In Section 2.1, we have shown that fully coherent light and thermal light can
be distinguished through the zero-time delay interferometric photon correlations
g(2X)(0). A value of g(2X)(0) = 1 indicates thermal light while g(2X)(0) = 0.5
is indicates coherent light. This suggests that partially coherent light leads to
0.5 < g(2X)(0) < 1. We now try to extract the fraction of coherent light ρ in the
light source.

3.1.1 Modelling a mixture containing coherent light

We consider the light emitted by the laser diode to be neither completely coherent
nor thermal. We assume that light emitted by the laser is a mixture of a coherent
light field Ecoh and a light field Eunc uncorrelated to Ecoh. The nature of Eunc can be
coherent, thermal, or a coherent-thermal mixture. As Eunc may also be a mixture of
uncorrelated coherent modes, Ecoh here represents the coherent mode in the mixture
with the highest intensity.

We model the light field mixture with an electric field

Emix(t) = √
ρEcoh(t) +

√
1 − ρEunc(t) , (3.1)

where ρ is the fraction of optical power emitted from the brightest coherent mode, and
the respective light field terms are normalised such that ∥Emix∥ = ∥Ecoh∥ = ∥Eunc∥.
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3.1. CONNECTING COHERENT LIGHT FRACTION TO g(2X)(τ)

For physically possible solutions, the fraction of coherent light ρ must be real valued
and 0 ≤ ρ ≤ 1.

3.1.2 Relationship between g(2X)(0) and ρ

We extract the fraction of coherent light ρ from the light field mixture interfero-
metric photon correlation g

(2X)
mix (τ) at τ = 0. To do this, we use Equation 2.9, which

requires the interferometric visibility-squared of Emix(t)∥∥∥g(1)
mix(τ)

∥∥∥2
= ρ2

∥∥∥g(1)
coh(τ)

∥∥∥2
+ (1 − ρ)2

∥∥∥g(1)
unc(τ)

∥∥∥2

+ 2ρ(1 − ρ) ℜ[g(1)
coh(τ) g(1)∗

unc (τ)]

+ 2ρ(1 − ρ) ℜ[g(1)
coh(∆) g(1)∗

unc (∆)] ,

(3.2)

and second-order photon correlation of Emix(t)

g
(2)
mix(τ) = ρ2 g

(2)
coh(τ) + (1 − ρ)2 g(2)

unc(τ)

+ 2ρ(1 − ρ)
[
1 + ℜ[g(1)

coh(τ) g(1)∗
unc (τ)

]
.

(3.3)

where the subscripts indicate the g(1)(τ) or g(2)(τ) of the coherent, uncorrelated or
mixture of light fields in the same convention as in Equation 3.1, and g(1)∗(τ) is the
complex conjugate of g(1)(τ). We note that for a propagation delay ∆ significantly
longer than the coherence time of the light source, g(1)(∆) ≈ 0.

Using Equation 3.2 and 3.3,the interferometric photon correlation of the mixture
light field at zero time difference becomes

g
(2X)
mix (0) =1

4[g(2)
mix(∆) + g

(2)
mix(−∆)

+ 2(ρ2 g
(2)
coh(0) + (1 − ρ)2 g(2)

unc(0) + 2ρ(1 − ρ))

− 2(ρ2 ∥g
(1)
coh(0)∥2 + (1 − ρ)2

∥∥∥g(1)
unc(0)

∥∥∥2
)] .

(3.4)

.
We further use g

(2)
coh(0) = 1 for coherent light, g

(2)
coh(∆) ≈ 1 for a propagation ∆

significantly longer than coherence time of the light source and assume
∥∥∥g(1)

unc(0)
∥∥∥ ≈ 1

for an interferometer with good visibility which reduces Eqn 3.4 to

g
(2X)
mix (0) = 2ρ − 3ρ2

2 + (1 − ρ)2

2 g(2)
unc(0), (3.5)

with g
(2X)
mix (0) being measured in our experiments and g(2)

unc(0) as a parameter.
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Figure 3.1: Combinations of g
(2X)
mix (0) and g(2)

unc(0). The shaded areas demarcate
the combinations that give non-physical solutions of ρ. Inset shows the possible
combinations of g

(2X)
mix (0) and g(2)

unc(0) for this experiment.

3.1.3 Relationships bounding g(2)
unc(0) to g

(2X)
mix (0)

For physically possible solutions, other than the constraints that 0 ≤ ρ ≤ 1
and ρ is real-valued, we also require g

(2X)
mix (0), g(2)

unc(0) ≥ 0. We also note that for
1 < g(2)

unc < 2 and 0.5 < g
(2X)
mix < 1, one of the solutions to Equation 3.5, always results

in ρ ≤ 0.5, which does not fully reflect the possible range 0 ≤ ρ ≤ 1, and hence
rejected. With these constraints, this results in lower bounds

g(2)
unc(0) ≥



0 , g
(2X)
mix (0) ≤ 2

3

3 + 1
1−2g

(2X)
mix (0)

, g
(2X)
mix (0) ∈ [2

3 , 1]

2g
(2X)
mix (0) g

(2X)
mix (0) ≥ 1

, (3.6)

and upper bounds for g
(2X)
mix (0) ∈ [0, 1

2)

g(2)
unc(0) ≤ 2g

(2X)
mix (0), (3.7)

which is shown in Figure 3.1.
We further assume that the uncorrelated light field is a mixture of coherent light

[g(2)(τ) = 1], and thermal light [g(2)(0) = 2] which bound its second-order photon
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Figure 3.2: Setup to extract the fraction ρ of coherent light emitted by a laser
diode. Light from the laser light is sent through an asymmetric Mach-Zehnder
interferometer, formed by two optical path from two output ports, indexed as A
and B. At each output port, photoevents are detected using single-photon avalanche
detectors (APDs), which generate photodetection events. These events are time-
stamped to extract interferometric photon correlations g(2X)(τ) numerically. From
the interferometric photon correlations at zero-time difference g(2X)(0), we extract
the fraction ρ of coherent light.
BS: Beam splitter

correlation 1 ≤ g(2)
unc(0) ≤ 2. This further constrains the possible solutions to ρ with

an upper bound,
ρ ≤

√
2 − 2 g

(2X)
mix (0), (3.8)

and a lower bound,

ρ ≥


1
2 + 1

2

√
3 − 4 g

(2X)
mix (0), for 1

2 ≤ g(2X)(0) ≤ 3
4

2 − 2 g
(2X)
mix (0), for 3

4 ≤ g(2X)(0) ≤ 1
, (3.9)

with g
(2X)
mix (0) ranging from 1/2 for fully coherent light, to 1 for fully incoherent light.

3.2 Experimental configurations and methods
The experimental setup to extract the fraction ρ of coherent light is shown in

Figure 3.2.

3.2.1 Equipment to measure g(2X)(τ)
• Light source

We used a temperature-stabilised 780 nm distributed feedback semiconductor
laser diode operating at different laser currents for the light source, The
laser diode is free-running and not frequency-locked to any cavity or optically
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Figure 3.3: Measured optical power emitted by the laser at different laser currents
IL. The lasing threshold IT is determined to be 37 mA (dotted lines), where the
steepest increase in optical power was observed.

resonant medium. The frequency bandwidth for this diode is quoted to be
0.6...1 MHz.

For a first characterisation of the laser diode, we determined the lasing threshold
by measuring the optical power emitted by the laser at different laser currents
IL from 1 to 120 mA in 1 mA steps shown in Fig 3.3. From this measurement,
we identify the lasing threshold IT = 37 mA at the laser current with the
sharpest increase in optical power.

• Beam splitters
For good spatial mode overlap, we used fused fibre couplers as the beam
splitters in the asymmetric Mach-Zehnder interferometer. The fused fiber
couplers are single-mode with a near 50:50 splitting ratio and has an operating
range of 785±15 nm.

• Propagation delay
We added an approximately 180 m long single-mode fibre in one arm of the
interferometer which created a propagation delay ∆ of about 900 ns. For a
780 nm laser with about 1 MHz bandwidth, the corresponding coherent time is
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about 300 ns. The propagation delay of 900 ns delay is 3 times longer than
the coherence time of the laser, sufficiently long enough for the delayed and
non-delayed fields to be uncorrelated.

• Single-photon detectors
Actively quenched silicon single-photon avalanche photodetectors with a timing
resolution about 40 ps were used to detect photoevents at each output of the
interferometer over an integration time of T . The photoevents were then
timestamped using a time tagger with a 2 ns timing resolution. From the
timestamps, we extract the interferometric photon correlation function g(2X)

by computing each time difference τ between each pair of photoevents, with the
number of pairs occurring for each time difference τ sorted into a histogram,
which is then normalised using the integration time T . These measurements
were repeated for different laser currents IL, to extract the g(2X)(τ) at each IL.

3.2.2 Extracting parameters from g(2X)(τ)

To extract the fraction of coherent light ρ emitted by the laser diode, we
determine g(2X)(0) from a fit of the interferometric photon correlation g(2X)(τ). The
negative component in the interferometric photon correlation g(2X)(τ) is from the
interferometric visibility ∥g(1)(τ)∥ of the light source. As the interferometric visibility
∥g(1)(τ)∥ of a light source is related to its spectral lineshape by a Fourier transform,
we assumed the coherent light emitted by the laser has a Lorentzian lineshape [66],
and hence model

g(2X)(τ) = 1 − A · exp
(

−2 ∥τ∥
τc

)
, (3.10)

where τc is the characteristic time constant of the coherent light, and A is the
amplitude of the dip. we extract g(2X)(0) from the fit as 1−A. Sample measurements
of g(2X)(τ) and their corresponding fits at laser current IL below, near and above IT

are shown in Figure 3.4.
For easier computation of ρ from the Equation 3.10, we rewrite in terms of A

following Equation 3.8 for the upper bound

ρ ≤
√

2A , (3.11)
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Figure 3.4: Measurements of interferometric photon correlations g(2X)(τ) at different
laser currents IL relative to threshold current IT : (a) IL = 30.0 mA lesser than IT ,
(b) IL = 38.0 mA near IT , and (c) IT = 60.0 mA greater than IT . The error bars at
each time bin indicates an uncertainty expected from Poissonian counting statistics
from the number of photoevent pairs with time difference matching the time bin.
The black solid lines are fits to Equation 3.10, where A and coherence time τc is
extracted. The fitted values of A are (a) −0.0006 ± 0.0003, (b) 0.29 ± 0.01 and (c)
0.455 ± 0.002. The fitted values of coherence time τc are (b) 7.9 ± 0.4 ns and (c)
168 ± 1 ns.
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and Equation 3.9 for the lower bound

ρ ≥


2A, for 0 ≤ A ≤ 1

4

1
2 + 1

2
√

4A − 1, for 1
4 ≤ A ≤ 1

2

(3.12)

3.2.3 Propagation of uncertainty from A to ρ

To obtain an uncertainty to the fraction ρ of coherent light, we require an error
propagation from the variable A in Equation 3.11 and 3.12 the fraction ρ of coherent
light. However, standard error propagation techniques do not apply here. For
example, in applying standard error propagation techniques to Equation 3.12, the
uncertainty σρ of the fraction ρ of coherent light is related to A and its uncertainty
via

σρ = ∂ρ

∂A
σA

= σA√
2A

(3.13)

where σA is the uncertainty of A obtained from fitting interferometric photon
correlations g(2X)(τ) to Equation 3.10.

We note that for values A ≈ 0, this would lead to infinite uncertainties. Instead,
we obtain ρ and its associated uncertainty σρ by performing a variable transform on
a probability distribution of A.

Instead of using standard error propagation techniques, we extract the uncer-
tainty σρ of the fraction of coherent light using a variable transform of probability
distributions. We demonstrate this method to extract the lower bounds of fraction
of coherent light ρ and its uncertainty σρ from A = 0.326 ± 0.008, extracted from
the g(2X)(τ) fit at IL = 38.0 mA. We first assume a normal probability distribution
for the variable A

pA(A) = exp
(

−(A − Ā)2

2σ2
A

)
(3.14)

with a mean at Ā = 0.326 and a standard deviation σA = 0.008. Note that we ignore
the scalar normalisation factor as we would renormalise the distribution to its area
later.

We represent Equation 3.12 as a function f which maps the variable A to fraction
of coherent light ρ. The transformed probability distribution to the variable ρ can
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Figure 3.5: Probability distributions of the fraction ρ of coherent light (a) upper
bound (red) and (b) lower bound (blue). The probability distributions were obtained
from a variable transform of the probability distribution of A in Equation 3.10,
extracted from interferometric photon correlations g(2X)(τ) measured at a laser
current IL = 38.0 mA. The shaded areas covers the 5th to 95th percentile of the
probability distribution, which contains a 90% confidence interval for ρ. The black
points indicate the mean value of ρ for each of the respective bounds, with the error
bars demarcating the 5th and 95th percentiles.

be written as

pρ(ρ) = pA(f−1(ρ)) · d

dρ
(f−1(ρ))

=



1
2 exp

(
−( ρ

2 −Ā)2

2σ2
A

)
for 0 ≤ ρ ≤ 1

2

(2ρ − 1) exp
(

− ( (2ρ−1)2+1
4 −Ā)2

2σ2
A

)
for 1

2 ≤ ρ ≤ 1

0 otherwise

(3.15)

We normalise the distribution pρ(ρ) numerically by dividing its area under the
curve, producing a normalised probability distribution, as shown in Figure 3.5(b).
Using this normalised probability distribution, we find the mean value of ρ and error
bars, which we define as a confidence interval between the 5th percentile and 95th
percentile of the probability distribution, covering 90% of the distribution in this
interval.
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3.2.4 Transition from incoherent to coherent light

Using the setup shown in Figure3.2, we extracted the interferometric photon
correlations g(2X)(τ) at different laser currents IL as shown in Figure 3.6(a). From
these g(2X)(τ), we extracted the the expectation values and confidence intervals for
the upper and lower bounds fraction of coherent light ρ, as shown in Figure 3.6,
middle.

From our measurements, the fraction of coherent light ρ remains near 0 below
the lasing threshold. Above this threshold, ρ increases quickly with the laser current
IL, appearing like a phase-transition from incoherent to coherent light. Both the
upper and lower bounds for the fraction of coherent light reached a mean value of
ρ = 0.986, within a 90% confidence interval 0.982 to 0.989, at IL = 120 mA. The
result agrees with the expectation that, as the laser current is increased above the
lasing threshold, the laser diode dominantly generates coherent light from stimulated
emission.

From Figure 3.6, middle, we can also see that the extracted upper bounds and
lower bounds are quite close together, even at laser currents near the lasing threshold.
This suggests that the heuristic model of the mixture light field in Equation 3.1,
describes the nature of light well even through the phase transition from incoherent
to coherent emission.

We also extracted the characteristic time constant τc at each IL from the fit of
g(2X)(τ) to Equation 3.10, as shown in Figure 3.6, bottom. We observe an increase
in τc with the laser current after the threshold current, before reaching a steady
coherence time τc between 300 ns and 350 ns, around laser current IL = 100 to
120 mA.

The coherence time τc of the coherent light field Ecoh is related to the frequency
full-width at half-maximum bandwidth ∆f via

∆f = 1
πτc

. (3.16)

Using Equation 3.16, the coherence time τc observed of about 300 ns around laser
current IL = 100 to 120 mA, translates to a bandwidth ∆f ≈ 1 MHz. This increase
in the coherence time τc corresponds to a narrowing of the emission linewidth. This
is in agreement with predictions from laser theory which expects a line narrowing
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Figure 3.6: (a) Interferometric photon correlations g(2X)(τ) measured for different
laser currents IL. (b) Fraction ρ of coherent light ρ upper bounds (red) and
lower bounds (blue) from fitting interferometric photon correlations g(2X)(τ) to
Equation 3.10. The expectation values and the error bars shown are propagated
from the uncertainty of A from the fit using the methods described in Section 3.2.3.
The inset shows the mean value and bounds for fraction ρ of coherent light in finer
laser current steps near the threshold current. (c) Coherence time τc extracted from
fitting interferometric photon correlations g(2X)(τ) to Equation 3.10. The vertical
dashed lines indicate the threshold current IT = 37mA.
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with increasing pump power [67]. We also observed a small modulation of this
characteristic timescale for larger laser currents, with a periodicity of about 6 mA.

3.2.5 Transition across a mode-hop

As shown in Figure 3.6, we observe a reduction in the fraction of coherent light
ρ between the laser current range of 49 to 51 mA. We also observe a reduction in
the characteristic time constant τc in the same laser current range.

Upon this observation, our hypothesis is a longitiudinal laser mode-hop occurring
in this laser current range. A laser mode-hop occurs when the emitters in the
laser can be resonant with different longitudinal modes when operating above the
lasing threshold. This results in a competition of coherent emission into different
frequencies, or a multimode operation

To further check if a mode-hop occurs between 49 to 51 mA, we measured the
spectrum of light emitted by the laser diode in this laser current range with an
optical spectrum analyser with a spectral resolution of 2 GHz (Bristol 771B-NIR).
In this current range, the laser diode indeed emitted light into two distinct spectral
bands, centered around 780.07 nm and 780.34 nm, as shown in Figure 3.7(a) and (b).
Thus, a mode hop is a very likely cause for this behaviour. For a better comparison
of the spectrum at different currents, we divided the spectral intensity at each
wavelength bin by the power in the wavelength range of 779.9 nm to 781.0 nm to
normalise the spectral intensity.

To extract a ratio of power emitted between the two spectral bands, we assumed
the two bands have the same spectral lineshape and spectral linewidth, with the
optical power emitted in each band proportional to its peak spectral intensity. Using
these assumptions, we quantified the power ratio

rα,β = Pα,β

Pα + Pβ

, (3.17)

where α, β indexes the spectral bands centered around 780.07 nm and 780.34 nm,
respectively, and Pα,β is the peak spectral intensity in the respective bands. We ex-
tract rα,β from the measured spectrum at different currents as shown in Figure 3.7(c).
We observe a nearly linear transition of the power ratios across the region of mode
hop between IL = 49 mA and 52 mA.

29



CHAPTER 3. CHARACTERISING THE EMISSION OF A LASER

0.00
0.20
0.40
0.60
0.80
1.00

rα

rβ

po
we

r
ra

tio
r α

,β

(c)

0.00
0.20
0.40
0.60
0.80
1.00

48 48.5 49 49.5 50 50.5 51 51.5 52

ρ

(d)

780.04

780.07

780.10
780.31

780.34

780.37

wa
ve

le
ng

th
(n

m
)

current IL (mA)

780.04

780.07

780.10

(a) α

780.31

780.34

780.37 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

no
rm

al
ise

d
in

te
ns

ity

(b) β

Figure 3.7: Different longitiudinal “chip” modes of the laser diode were excited
at different currents, and mode-hop was observed. The mode-hop resulted in a
reduction in fraction of coherent light ρ. The spectrum of light emitted from laser
diode in the two distinct frequency bands as shown in (a) a frequency band centered
around 780.07 nm and (b) a frequency band centered around 780.34 nm, indexed
as α and β respectively. (c) Power ratio rα,β of light emitted into the respective
spectral band α around 780.07 nm (solid squares) and β at 780.34 nm (open circles),
respectively at different currents . (d) Upper bounds (red) and lower bounds (blue)
for the fraction ρ of coherent light extracted from interferometric photon correlations
g(2X)(τ) using the methods described in Section 3.2.3.
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We also measured interferometric photon correlations g(2X)(τ) from IL = 49 mA
to 52 mA and extracted the fraction ρ of coherent light, as shown in Figure 3.7(d).
Across this current range, we observed a reduction of ρ with its lowest value between
50.0 mA to 50.2 mA. In this current range, the two modes have a similar power
fraction rα ≈ rβ. We interpret this reduction in the fraction of coherent light as
these different modes being incoherent to each other, although each mode may be
coherent to itself, resulting in the light emitted to be a mixture of a coherent mode,
and an uncorrelated mode.

Summary
We have presented a technique to quantify the fraction of coherent light ρ emitted

by a laser diode using interferometric photon correlations g(2X). To do this, we
modelled this mixture of light as a superposition of a coherent light in a single
mode with another light in uncorrelated mode. From this model, we established a
relationship between interferometric photon correlations g(2X)(τ), and upper and
lower bounds for the fraction ρ of coherent light, which required a non-standard
numerical method of error propagation. In our experiments, we measured ρ as the
light emitted by the laser diode, changing from incoherent to dominantly coherent
light across the lasing threshold in a phase transition-like manner. We recorded a
maximum fraction of coherent light ρ = 0.986 within a 90% confidence interval of
0.982 to 0.986, with a spectral bandwidth of about 1 MHz. Using this technique,
we have also identified a range of laser currents above the lasing threshold where a
reduction in the fraction ρ of coherent light was observed. We measured the spectrum
of light emitted in this range of currents and found emission in two spectral bands,
suggesting a mode competition between two longitudinal modes. From this, we
interpreted the reduction of coherent light fraction as a result of the two longitudinal
modes being uncorrelated to each other although each mode may be coherent to
itself.
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Chapter 4

Mechanisms of photon bunching

Photon bunching can result from various mechanisms. One such mechanism
involves amplitude modulation of the entire light field, such as from inherent intensity
noise of the source [1] or via intensity modulators [47, 68]. Another mechanism is
the superposition of phase-randomised light fields, like the light emitted from gas
discharge lamps, which models light with statistical properties similar to blackbody
radiation, referred to as thermal light [12, 69]. This mechanism also underpins light
scattered off particles [15–17] and rotating ground glass plates [18–20, 22, 23], which
are commonly regarded as techniques to generate light with properties similar to
thermal light.

Identifying the mechanism for photon bunching is crucial to determine the source
of randomness causing the effect. Although photon bunching can be observed as
a peak in the second-order photon correlation g(2)(τ), typically measured with a
Hanbury-Brown and Twiss type experiment, the information provided, such as the
timescale and amplitude of the photon bunching, may be insufficient to deduce
the specific mechanisms causing the photon bunching. This motivates the need for
complementary techniques to identify these mechanisms.

In this Chapter, we use interferometric photon correlation g(2X)(τ) to infer the
mechanism causing the photon bunching in bunched light. This technique is an
adaptation from Lebreton et al. [2], who used this to distinguish a light source
producing amplified spontaneous emission from a laser with intensity noise. Here,
we use this technique on two bunched light sources commonly substituted for a
blackbody radiator: laser light scattered off a rotating ground glass plate, and green
emission lines from a mercury discharge lamp around 546 nm.
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We found the second-order photon correlation g(2)(τ) of laser light scattered
off a rotating ground glass plate occurs on timescale and temporal profile different
from its interferometric visibility ∥g(1)(τ)∥. This suggests that the photon bunching
mechanism cannot be purely due to phase fluctuations. In contrast, the emission line
from a mercury discharge lamp shows an interferometric photon correlation g(2X)(τ)
indicating that the temporal profile and timescale of second-order photon correla-
tion g(2)(τ) and interferometric visibility-square ∥g(1)(τ)∥2 are identical, implying
that the photon bunching is related to the phase fluctuations. Furthermore, the
interferometric photon correlations g(2X)(τ) of the mercury discharge lamp shows
that Siegert relation is obeyed, suggesting that it emits thermal light.

4.1 Thermal light and the Siegert relation
An example of light that exhibit photon bunching caused by phase fluctuations is

thermal light. To understand how phase fluctuations can result in photon bunching,
we show how a thermal light’s interferometric visibility ∥g(1)(τ)∥, which characterises
the phase fluctuation in a light source, is connected to its second-order photon
correlation g(2)(τ) . This connection is often referred to as the Siegert relation [65].
Here we present a derivation of the Siegert relation adapted from Loudon [5].

Thermal light is commonly modelled as a superposition of the individual light
fields from independently phased emitters Ej(t) in an ensemble

E(t) =
N∑

j=1

1√
N

Ej(t), (4.1)

where N is the number of emitters in the ensemble. For simplicity, we have adopted
a normalisation such that ∥E(t)∥ = ∥Ej(t)∥ = 1. The independent phasing between
fields of different indices satisfies the condition

⟨E∗
j (t)Ek(t + τ)⟩ = 0 for j ̸= k . (4.2)

An assumption commonly made for thermal light is that the first-order field correla-
tions g1(τ) between emitters and with the ensemble are identical:

g(1)(τ) = ⟨E∗(t)E∗(t + τ)⟩
⟨E(t)E(t)⟩ =

⟨E∗
j (t)Ej(t + τ)⟩
⟨E∗

j (t)Ej(t)⟩
. (4.3)
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Using Equation 4.1, the second-order photon correlation of thermal light is

g(2)(τ) =⟨E∗(t)E∗(t + τ)E(t + τ)E(t)⟩
⟨E∗(t)E(t)⟩⟨E∗(t)E(t)⟩

= 1
N2

j,k,l,m∑
⟨E∗

j (t)E∗
k(t + τ)El(t + τ)Em(t)⟩ .

(4.4)

Therein, terms that contain an unequal number of E and E∗ with the same index„
such as ⟨E∗

j (t)E∗
j (t + τ)Ej(t + τ)Ek(t)⟩, vanish. The remaining non-zero terms are

j = k = l = m:
j∑

⟨E∗
j (t)E∗

j (t + τ)Ej(t + τ)Ej(t)⟩ = N, (4.5)

j = l, k = m:
j ̸=k∑

⟨E∗
j (t)E∗

k(t + τ)Ek(t + τ)Ej(t)⟩

=
j ̸=k∑

⟨E∗
j (t)Ej(t)⟩⟨E∗

k(t)Ek(t)⟩

=N(N − 1),

(4.6)

j = m, k = l:
j ̸=k∑

⟨E∗
j (t)E∗

k(t + τ)Ej(t + τ)Ek(t)⟩

=
j ̸=k∑

⟨E∗
j (t)Ej(t + τ)⟩⟨E∗

k(t + τ)Ek(t)⟩

=N(N − 1) ∥g(1)(τ)∥2,

(4.7)

We sum the terms in Equation 4.5 to 4.7, which leads to the Siegert relation

g(2)(τ) = 1
N2

[
N + N(N − 1) + N(N − 1) ∥g(1)(τ)∥2

]
= 1 +

(
1 − 1

N

) ∥∥∥g(1)(τ)
∥∥∥2

≈ 1 +
∥∥∥g(1)(τ)

∥∥∥2
,

(4.8)

where 1/N → 0 assuming a large number N . We note that the interferometric
visibility ∥g(1)(τ)∥ in Equation 4.8 refers to the interferometric visibility of the
individual emitters, which has been assumed to be identical to the ensemble.

4.2 Experimental settings
In this Section, we describe our preparation of two bunched light sources: light

from a mercury discharge lamp and light scattered off a rotating ground glass plate
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Figure 4.1: Setup for different bunched light sources. (a) Mercury discharge lamp.
Light from the lamp is filtered with a 546 nm bandpass filter (BPF) and a linear
polariser (LP). With an aspheric lens, some of the light is focused into a multimode
fibre before projecting into a single mode fibre. (b) Laser light scattered off a
rotating reflective ground glass plate. Light from a 780 nm laser is focused onto
a rotating ground glass plate. Laser light scattered off the ground glass plate is
sampled directly into a single mode fibre (SMF) 19 cm away.

illuminated by a laser. We also describe the setups to extract second-order photon
correlations g(2)(τ) and interferometric photon correlations g(2X)(τ) for the respective
light sources.

Mercury discharge lamp

The setup to prepare the light emitted from a mercury discharge lamp is shown
in Figure 4.1(a). The emission of mercury is filtered with an optical bandpass with
a center wavelength of 546 nm and a bandwidth of 3 nm. A single polarisation is
selected using a linear polariser with an extinction ratio of about 1000 : 1 between
two orthogonal linear polarisations. The filtered light is then sampled by focusing
some of the light into a multimode fibre. The light from the multimode fibre is then
projected into a single spatial mode as it enters a single-mode fused fibre coupler,
which forms part of a Hanbury-Brown and Twiss setup to measure second-order
photon correlations g(2)(τ), as shown in Figure 2.2(a), or as part of the asymmetric
Mach-Zehnder interferometer to extract the interferometric photon correlations
g(2X)(τ).

For the asymmetric Mach-Zehnder interferometer, we used a single mode fibre
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4.2. EXPERIMENTAL SETTINGS

about 2 m long to create a propagation delay of about 10 ns between the two paths
of the interferometer. We used actively quenched silicon avalanche photodetectors
with a 40 ps timing jitter to detect photoevents for both second-order photon
correlations g(2)(τ) and interferometric photon correlations g(2X)(τ) measurements.
The photoevents were logged using a timestamp card with a timing resolution of
about 4 ps.

Laser light scattered off rotating ground glass plate

To prepare this light source, we used a distributed feedback laser emitting light
with central wavelength at 780 nm. The laser is focused on a reflective ground glass
plate diffuser with a grit of 1500, with an estimated beam diameter W on the ground
glass plate of about 4 µm, at a radial distance R of about 10 mm off-centred from
the rotation axis of the ground glass plate. A rotation motor coaxial to centre of
the ground glass plate rotates the ground glass plate with a period T0 of about 4 ms.
A single mode fibre for 780 nm was placed 19 cm away from the illuminated spot to
sample some of the scattered light into a single spatial mode.

To extract interferometric photon correlations g(2X)(τ), the sampled light is
sent through an asymmetric Mach-Zehnder interferometer similar to the setup in
Figure 2.1. In the interferometer, we used fused fibre couplers compatible with
780 nm light as beamsplitters, and a single mode fibre of about 400 m long, to create
a propagation delay ∆ of about 2 µs between the two paths of the inteferometer.
Actively quenched silicon avalanche photodiodes with a timing jitter of 40 ps were
used to detect photoevents. The detection timing of photoevents were logged with a
timestamp card with 2 ns resolution. To extract second-order photon correlation
g(2)(τ), one path of the interferometer was obstructed, which created a Hanbury-
Brown Twiss type interferometer with the remaining components of the setup, as
shown in Figure 2.2(b).

As a characterisation of the laser light, we extracted the interferometric photon
correlations g(2X)(τ), without the rotating ground glass plate as shown in Figure 4.2.
Using the techniques in Chapter 3, we find that it has a coherence time τc = 200±1 ns,
and a dip amplitude A = 0.456 ± 0.002, which translates to fraction of coherent
light emitted by the laser ρ = 0.954 with a 90% confidence interval between 0.950
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Figure 4.2: Interferometric photon correlation g(2X)(τ) for the laser light before
scattering off the rotating ground glass plate. Blue points show the measured data
and black solid lines show the fitted curves to Equation 3.10, from which we extracted
a coherence time τc = 200 ± 1 ns and a dip amplitude A = 0.456 ± 0.002. Using
the techniques presented in Chapter 3, the dip amplitude translates to a fraction of
coherent light emitted by the laser to be ρ = 0.954 with a 90% confidence interval
between 0.950 to 0.958.

to 0.958.

4.3 Photon bunching in both sources

To analyse the photon bunching phenomena in these two sources, we present
suitable models for the second-order photon correlations g(2)(τ) for these two light
sources. We then fit the second-order photon correlations g(2)(τ) extracted from
measurement to these models to extact characteristic timescales and amplitude of
the photon bunching.

Mercury discharge lamp

The green emission lines of the mercury discharge lamp around 546 nm are
contributed by different isotopes and hyperfine transition of mercury, with different
intensities [70]. In the discharge lamp, each of these emission lines are expected to
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be Doppler broadened by the temperature of the lamp at about 400 K, which results
in a Gaussian spectral profile in each of the emission lines. However, these Doppler
broadened emission lines have spectral overlaps which results in a complex spectrum
of the emission around 546 nm. Nevertheless, we approximate the spectrum to have
a Gaussian profile. From the Wiener-Khintchine [63, 64] theorem, which relates
the spectrum of a signal to its autocorrelation function by a Fourier transform, this
Gaussian spectral profile implies that the second-order photon correlation of the
light from the mercury discharge lamp also has a Gaussian profile

g(2)(τ) = 1 + βHg · exp
−

(
τ

τHg

)2
 , (4.9)

where βHg is the amplitude of the bunching peak, and τHg is the characteristic
timescale of this bunching feature.

We fitted the measured second-order photon correlation g(2)(τ) for light from
the mercury discharge lamp to Equation 4.9, shown in Figure 4.3(a). From the fit,
we extracted βHg = 0.144 ± 0.009, τHg = 0.23 ± 0.02 ns, and a reduced-χ2 = 2.80.

Laser light scattered off rotating ground glass plate

For the laser light scattered off the rotating ground glass plate, we expected a
Gaussian profile for its second-order photon correlations g(2)(τ) from theoretical
models of light diffracting from the ground glass plate [20, 22, 71, 72]

g(2)(τ) = 1 + βRGG · exp
[
−
(

τ

τRGG

)2
]

, (4.10)

where βRGG is the amplitude of the bunching peak, and τRGG is the characteristic
timescale of this bunching feature.

From these models, we can predict τRGG for a beam focused on the ground glass
plate with the light scattered from the ground glass plate collected at distance
significantly longer than the beam diameter on the ground glass plate

τRGG ≈ WT0

4πR
, (4.11)

where T0 is the period of rotation of the ground glass plate, W is the beam diameter
on the ground glass plate and R is the radial distance of the beam spot on the
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Figure 4.3: Second-order photon correlations g(2)(τ) for (a) mercury discharge lamp
(green) and (b) laser light scattered off a rotating ground glass plate (red). Solid lines
show the fitted curves to Equation 4.9 for mercury discharge lamp and Equation 4.10.
From the fit, we extract the photon bunching amplitude βHg = 0.144 ± 0.009 and
a characteristic timescale τHg = 0.23 ± 0.02 ns for the mercury discharge lamp, a
photon bunching amplitude βRGG = 0.858 ± 0.002 and a characteristic timescale
τRGG = 167.1 ± 0.3 ns for the laser light scattered off the rotating ground glass plate.

ground glass plate from the axis of rotation. Using Equation 4.11, we predict
τRGG = 130 ± 30 ns based on our experimental settings.

We fitted the measured g(2)(τ) for the laser light scattered off the rotating
ground glass plate to Equation 4.10, shown in Figure 4.4(b). From the fit, we extract
βRGG = 0.858±0.002, τRGG = 167.1±0.3 ns, and a reduced-χ2 = 1.18. The extracted
value of τRGG = 167 ns is close to predicted value of 130 ± 30 ns from experimental
settings using Equation 4.11, with the difference attributed to accumulated errors
in measuring beam diameter W , rotation period T0 of the ground glass plate and
radial distance R of the beam spot on the ground glass plate from the rotation axis.

40



4.4. DISTINCT PHOTON BUNCHING MECHANISMS

0.98
1.00
1.02
1.04
1.06

−15 −10 −5 0 5 10 15

13000

13500
(a) Hg

1.00

1.10

1.20

1.30

−3 −2 −1 0 1 2 3

14000

16000
(b) RGG

g
(2

X
)

co
in

ci
de

nc
es

time difference between photoevents τ (ns)

g
(2

X
)

co
in

ci
de

nc
es

time difference between photoevents τ (µs)

Figure 4.4: Interferometric photon correlations g(2X)(τ) of (a) mercury discharge
lamp (green) (b) laser light scattered off a rotating ground glass plate. Solid
lines show the fitted curves to (a) Equation 4.12 and (b) Equation 4.10 for the
interferometric photon correlations g(2X)(τ) extracted from measurements.

4.4 Distinct photon bunching mechanisms

To determine if the photon bunching of these two light sources are related to their
respective phase fluctuations, we extract their interferometric photon correlations
g(2X)(τ), as shown in Figure 4.4. We observe the features around zero-time difference
in the interferometric photon correlations g(2X)(τ ≈ 0), to compare the residual
difference between second-order photon correlations and interferometric visibility
g(2)(τ) − ∥g(1)(τ)∥2. If the residual difference follows a unimodal distribution the
photon bunching may be related to the phase fluctuation. Otherwise, if the residual
difference follows a multimodal distribution, the photon bunching may be caused by
other mechanisms rather than phase fluctuations.
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Mercury discharge lamp

For the emission from the mercury discharge lamp, its interferometric photon
correlation g(2X)(τ) around zero-time difference appears constant at g(2X)(τ ≈ 0) = 1,
obeying Siegert relation which suggests it may be a thermal light source. Obeying
the Siegert relation would further suggest that the photon bunching of this light
source is related to its phase fluctuations.

Using Equation 2.9, which describes the interferometric photon correlation
g(2X)(τ) for a thermal light source, and the second-order photon correlation g(2)(τ)
of the emission from the mercury discharge lamp in Equation 4.9, its interferometric
photon correlation is

g(2X)(τ) = 1 + βHg

4

[
exp

(
−
∥∥∥∥∥2(τ + ∆)

τHg

∥∥∥∥∥
)

+ exp
(

−
∥∥∥∥∥2(τ − ∆)

τHg

∥∥∥∥∥
)]

, (4.12)

where βHg is the photon bunching amplitude, τHg is the characteristic timescale of
the photon bunching, and ∆ is propagation delay in the asymmetric Mach-Zehnder
interferometer.

We fitted the extracted interferometric photon correlation g(2X)(τ) using Equa-
tion 4.12, with the propagation delay ∆ the only free parameter in the fit. The
other parameters were obtained from fitting the second-order photon correlation
g(2)(τ) of the emission line from the mercury discharge lamp to Equation 4.9 in the
previous Section. The fitted interferometric photon correlation g(2X)(τ) is shown
as a solid line in Figure 4.4(a). The fit has a reduced-χ2 = 1.10 for the g(2X)(τ)
measured with mercury discharge lamp, a value close to 1 which suggests that it
conforms well to the model for thermal light.

Laser light scattered off a rotating ground glass plate

The interferometric photon correlations g(2X)(τ) for the laser light scattered off a
rotating ground glass plate is shown in Figure 4.4b. We observed that interferometric
photon correlations g(2X)(τ) around zero-time difference τ ≈ 0 seems to feature a
bimodal distribution; the presence of both a peak and a dip feature on different
characteristic timescales, with both features centered around τ ≈ 0. The bimodal
distribution suggests that the photon bunching is not purely due to the phase
fluctuations.
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From Equation 2.9, the peaks observed in Figure 4.4b are related to the photon
bunching. We interpret this as primarily due to amplitude modulation of the laser
light by the rotating ground glass plate. On the other hand, the dip feature is
related to the phase fluctuations of the light field, which we attribute to phase
fluctuations of the laser. We thus modelled the second-order photon correlation
g(2)(τ) as following the model of laser light scattered off a rotating ground glass
plate in Equation 4.10, and interferometric visiblity ∥g(1)(τ)∥ as having a two-sided
exponential decay, assuming the spectrum of the laser has a Lorentzian lineshape.
This results in the interferometric photon correlation

g(2X)(τ) =1 + βRGG

4

exp
−

(
τ − ∆
τRGG

)2
+ exp

−
(

τ + ∆
τRGG

)2


+1
2

[
βRGG · exp

[
−
(

τ

τRGG

)2
]

− A · exp
(

−
∥∥∥∥2τ

τc

∥∥∥∥)
]

,

(4.13)

where βRGG is the photon bunching amplitude, τRGG is the characteristic timescale
of the photon bunching, τc is the coherence time of the laser light, A is the ampli-
tude of the dip, and ∆ is the propagation delay in the asymmetric Mach-Zehnder
interferometer.

We fitted the extracted interferometric photon correlation g(2X)(τ) using Equa-
tion 4.13 with the propagation delay ∆, the coherence time τc of the laser light,
the amplitude A of the dip as free parameters for the fit. For the other parame-
ters such as the photon bunching amplitude βRGG and characteristic timescale of
photon bunching τRGG, we use parameters extracted from fitting the second-order
photon correlations g(2)(τ) to Equation 4.10 in the previous section. From the fit,
we extract the laser light’s coherence time τc = 141 ± 1 ns, and a dip amplitude
A = 0.445 ± 0.003. The dip amplitude, suggests a fraction of coherent light about
ρ = 0.942, with a 90% confidence interval between 0.935 to 0.949. The fit has a
reduced-χ2 = 1.20, suggesting a good fit to the model provided in Equation 4.13.

In comparison to the interferometric photon correlation g(2X)(τ) extracted from
the laser source without the ground glass plate, we observe a reduction of the laser
light’s coherence time from τc = 200 ± 1 ns to τc = 141 ± 1 ns, and a reduction of the
mean fraction of coherent light from ρ = 0.954 to 0.942. The reduction in coherence
time τc and mean fraction of coherent light ρ may be attributed to some random
phase modulation of the laser light by multiple scattering sites on the rotating

43



CHAPTER 4. MECHANISMS OF PHOTON BUNCHING

ground glass plate. Nevertheless, the second-order photon correlation g(2)(τ) and
interferometric visibility ∥g(1)(τ)∥ still differ significantly in temporal profiles and/or
timescales, similar to cases presented in Figure 2.4(b) and (c). Therefore, the photon
bunching of laser light scattered off a rotating ground glass plate cannot be entirely
attributed to phase modulation of the light source.

Summary
In this Chapter, we demonstrated how interferometric photon correlations g(2X)(τ)

can be used to directly compare the second-order photon correlation g(2)(τ) and
interferometric visibility ∥g(1)(τ)∥ of a light source. This comparison provides insights
to the mechanism which results in the observation of photon bunching. From the
interferometric photon correlations g(2X)(τ), a unimodal distribution around zero-
time difference τ ≈ 0 suggests that the photon bunching may be related to the
phase fluctuation of the light source. Otherwise, a multimodal distribution around
zero-time difference τ ≈ 0, suggests that the photon bunching is not entirely caused
by phase fluctuations in the light source, resulting in a different timescale and/or
temporal profile of the second-order photon correlation g(2)(τ) and interferometric
visibility ∥g(1)(τ)∥.

Our measurements suggests that the mercury discharge lamp emits thermal
light, where its second-order photon correlation g(2)(τ) and interferometric visibility
∥g(1)(τ)∥ not only decay on the same timescale with the same temporal profile, but
also obey the Siegert relation. In contrast, we observed that the photon bunching of
laser light scattered off a rotating ground glass plate is not from phase fluctuations
of the light source, which clearly does not obey the Siegert relation and hence should
not be considered as thermal light. This calls into question the suitability of laser
light scattered off a rotating ground glass plate as a substitute for a blackbody
radiator, which prompts for further investigation.
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Chapter 5

Ultrabright bunched light

Bunched light can have useful applications in areas such as imaging [35–37] clock
synchronisation [40, 41] and ranging [4, 38, 39]. In these applications, two properties
of bunched light are leveraged on: its random phasing, which naturally provides
distinct signals even among identically built sources, and photon bunching property,
from which timing information can be extracted.

However, in these applications, the usefulness of the bunched light sources is
limited by two parameters. First, the brightness of the source must withstand
the attenuation by the propagation media and the target of interest. Second, the
characteristic timescale of the photon bunching must be sufficiently large to be
resolved by state-of-the-art photodetectors. For a bunched light source where its
photon bunching originates from phase fluctuations, these two parameters can be
jointly characterised by the spectral density of a light source.

Laser are well-known for their high spectral densities. Furthermore, the phase
fluctuations in a laser are attributed to quantum uncertainties in its emitters and
radiation produced [73], and is referred to as quantum noise. However, in principle,
lasers do not exhibit photon bunching from phase fluctuations [6]. This motivates
for techniques to construct a bunched light source from a laser, utilising its high
spectral density and phase fluctuations from quantum noise.

In this Chapter, we present our technique to generate an ultrabright source of
bunched light using the phase fluctuations originating from quantum noise in a
laser. To do this, we superpose laser light with itself beyond its coherence time
using an asymmetric Mach-Zehnder interferometer, which produces an output light
field randomly phased by the quantum noise of the laser. To our knowledge, this
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Figure 5.1: Schematic of a general approach to produce thermal light from coherent
light. Coherent light from a laser is sent to a 1 × N beam splitter represented by
box labelled 1 × N BS. which splits the light into N different modes. A different
time-varying random phase modulation ϕi(t) is applied to each mode. The N modes
are then recombined or projected into a single mode represented as a N to 1 beam
combiner (N ×1 BS). The light output from this beam combiner approaches thermal
light.

is the first demonstrationn of using this technique as a bunched light source. This
technique has previously been used to generate random intensity spikes as part of a
quantum random number generator [51, 52].

5.1 Superposition of uncorrelated fields
Towards generating a bunched light source, we study the model of thermal

light, an example of bunched light where its photon bunching originates from phase
fluctuations. We recall that thermal light can be modelled as a large ensemble of
emitters, emitting independently phased coherent light fields in Equation 4.1:

E(t) =
N∑

j=1

1√
N

Ej(t).

From Equation 4.1, an approach to produce thermal light from coherent light
may be to use an N -path interferometer as shown in Figure 5.1. The coherent light is
divided into N spatial modes using a 1 to N beam splitter. The temporal correlation
between spatial modes is removed by applying a different random time-varying phase
modulation ϕi(t) to each spatial mode. The N spatial modes are then recombined
into a single spatial mode again.

Alternatively, the same effect can be achieved by superposing multiple coherent
light sources that are phase independent with each other. This technique has been
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Figure 5.2: Proposed setup for converting coherent light to bunched light. A single
spatial mode of coherent light from a laser is split into two spatial modes via
a beamsplitter (BS). A delay ∆1 significantly longer than the coherence time of
coherent light is added to one of the modes. The two spatial modes recombine again
at another beam splitter, and splits into two modes. In one of the modes, a delay ∆2
using the conditions in Equation 5.1 is added to one of the modes, the two modes
are recombined and splitter at another beamsplitter. The process of adding a delay
∆i to one arm, recombining and splitting is iterated M times (see inset for the setup
in each iteration). At the last beam splitter, either one of the two output modes
can be used as a light source approaching thermal light.

proposed by Glauber in the footnote of Reference [69].
The challenge in these approaches is to efficiently recombine N independent

spatial modes into a single spatial mode. Ideally, this requires an N -to-1 beam
combiner with minimal losses as shown in Figure 5.1. However, at the point of
writing this thesis, such a device does not exist. A closely related device is the
photonic lantern [74], which combines multiple single mode optical fibres into a
multimode optical fibre.

To minimise the losses in superposing these N spatial modes, we present an
alternative approach which uses a cascade of 2-to-2 beam splitters to generate
the multi-path interferometer shown in Figure 5.2. The coherent light is divided
equally into two spatial modes by a 50 : 50 beamsplitter as it enters the setup. To
ensure that these two modes have uncorrelated phases when they recombine at the
next beamsplitter, the temporal correlation between the two modes is removed by
introducing a propagation delay ∆1 to one of the modes, with ∆1 much longer than
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the coherence time τc of the light. The next 50 : 50 beamsplitter recombines these
two modes, and outputs them again into two spatial modes. The process repeats
with introducing a propagation delay ∆i in one of the modes, recombining the two
modes, and then splitting again into two modes is repeated M times.

This cascade of M modules that takes in two spatial modes, adding a delay to
one mode, putting them in a superposition and splitting them into two spatial modes
results in an interferometer with 2M possible paths which the initial coherent light
field may propagate through. For the coherent light field from each of these paths
to be independently phased from one another, the propagation delays ∆i introduced
have to satisfy ∥∥∥∥∥∥∆i −

j ̸=i∑
∆j

∥∥∥∥∥∥ ≫ τc , (5.1)

with a simple way to do so by using the relationship

∆i+1 = 2∆i ,

∆1 ≫ τc .
(5.2)

At the output of this interferometer, the resultant light field is a superposition of
2M independently phased coherent light fields, which approaches the thermal light
model in Equation 4.1 for a large M . As the phase fluctuation of each coherent light
field in principle originates from the quantum noise of the laser, the random phasing
after superposing these fields is also a result of quantum noise.

Using Equation 2.11, this output light field has a second-order photon correlation

g(2)(τ) = 1 +
(

1 − 1
2M

) ∥∥∥g(1)(τ)
∥∥∥2

, (5.3)

where ∥g(1)(τ)∥ is the interferometric visibility of the laser source.
Assuming the interferometric visibility ∥g(1)(0)∥ = 1, the relationship between

photon bunching amplitude g(2)(0) − 1 of this output light field and the number of
modules M used is shown in Figure 5.3. Even for M = 3, one expects a photon
bunching amplitude g(2)(0) − 1 = 0.875, which is already 93.75% of the photon
bunching amplitude g(2)(0) − 1 = 1 of ideal thermal light. We note that for M = 0,
Equation 5.3 predicts a second-order photon correlation g(2)(τ) = 1, which agrees
with the expectation for a single coherent mode.
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Figure 5.3: Expected photon bunching amplitude g(2)(0) − 1 for different number of
modules M described in Figure 5.2. The black solid curve shows relation between
photon bunching amplitude g(2)(0) − 1 and using Equation 5.3, and the blue crosses
mark out values for integer M . The red dotted line shows photon bunching amplitude
g(2)(0) − 1 = 2 for an ideal thermal light.

5.2 Superposition of two coherent modes

We demonstrate our technique towards converting coherent light from the laser
to bunched light using the setup shown in Figure 5.4. This is a variation of the
setup in Figure 5.2 when M = 1 . This converts the single coherent mode into a
superposition of two independent modes.

A laser operating above the lasing threshold emits light with a central wavelength
about 780 nm. Using the techniques in Chapter 3, we measure a coherence time of
τc = 194 ± 1 ns and a proportion of coherent light emitted by the laser to be about
ρ = 0.940, within a 90% confidence interval of 0.931 to 0.948.

To create an asymmetric Mach-Zehnder interferometer to superpose two un-
correlated modes of coherent light, the light is first sent through a single-mode
fused fibre coupler which acts as a beam splitter and distributes the light into two
spatial modes. The two outputs of the fused fibre coupler terminate with aspheric
lenses preparing collimated beams in free space. In each beam path, a half-wave
plate and quarter-wave plate for 780 nm was introduced, and adjusted to match
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Figure 5.4: Setup for converting coherent light to bunched light. A single spatial
mode of coherent light from a laser is split into two spatial modes via a beamsplitter
(BS). In both arms of the interferometer a half-wave plate (λ/2) and quarter wave-
plate (λ/4) can be adjusted to match the polarisations of the two modes when
they meet at a second beam splitter. A propagation delay ∆bun significantly longer
than the coherence time of the coherent light is introduced to one of the modes via
an optical fiber. In the other mode, we attenuate the optical power transmitted
through this arm by adjusting the fibre optic coupling, modelled here as a variable
attenuator (VA). This is to vary the power fraction α between the two modes when
they recombine again at another beam splitter, producing a superposition of two
independently phased coherent light fields. The two output mode superposes with
each other when they meet at a second beam splitter. One of the two output modes
from the interferometer is used as a bunched light source.

the polarisation of the two light fields when they combine at a second fused fibre
coupler later. Using another pair of aspheric lenses, we coupled light from one of
the beams into a series of optical fibres with a combined length of about 280 m,
which introduced a propagation delay ∆bun ≈ 1.4 µs. The other end of this fibre is
connected to one of the input ports of a second fused fibre coupler using fibre mating
connectors. The other input of this fused fibre coupler receives the beam without
delay. To match the different losses of the two paths, we realised an attenuation to
the beam without delay by misalignment of the beam entering the the input port of
the second fused fibre coupler.

The second fused fibre coupler, closes the asymmetric interferometer, and light
emerging from one of the output ports is used as the light source for a superposition
of two coherent modes with independent phases. We matched the polarisations of
these two superposed modes by introducing an in-line fibre optic polariser after the
output of the interferometer. The optical power was measured after the polariser, and
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the half-wave and quarter-wave plates were adjusted to maximise the transmission of
light from each mode through the polariser. The polariser is subsequently removed
after the polarisations are matched.

Ideally, the conversion of laser light to bunched light expects an attenuation of
3 dB, which is due to dividing the optical power equally between the two output
modes of the interferometer. We measured about 30 mW of optical power entering
the asymmetric Mach-Zehnder interferometer, and 1 mW exiting from one port of
the interferometer. The optical losses is mainly attributed to the splicing losses in
the optical fibre which introduced the propagation delay ∆bun. This also required
a similar attenuation in the non-delayed path of the interferometer to match the
losses. An optical power of 1 mW from one port of the interferometer translates to
about 4 × 1016 photons per second, at a wavelength of 780 nm.

The superposition of the light field at a output of the interferometer is

Ebun(t) =
√

αE(t) +
√

(1 − α)E(t + ∆bun) , (5.4)

where the unindexed fields E(t) represents the light field from the laser, and α

represents the power fraction of the non-delayed field at one of the output port of
the interferometer. In the above model, the magnitude of the electric fields were
normalised such that ∥Ebun(t)∥ = ∥E(t)∥ = ∥E(t + ∆bun)∥.

To measure the second-order photon correlation g(2)(τ) of the output light field
from the interferometer, we constructed a Hanbury-Brown and Twiss type inter-
ferometer by obstructing one arm of the asymmetric Mach-Zehnder interferometer
to extract interferometric photon correlations g(2X)(τ), as shown in Figure 2.2(b).
Light from the bunched light source is output into two spatial modes. The light from
each spatial mode is sent into actively quenched silicon avalanche photodetectors
with a timing resolution of about 40 ps. The detection timings of these photevents
are logged with a timestamp card with 2 ns resolution. From the timestamps, photon
correlations are extracted using the methods described in Chapter 2. The measured
the second-order photon correlation g(2)(τ) for the bunched light for different power
α is shown in Figure 5.5(a).

Using the superposition field in Equation 5.4, and the correlations in Equa-
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Figure 5.5: (a) Second-order photon correlations g(2)(τ) extracted from the super-
position of two independent coherent modes at power fraction α = 0.50 (green),
0.15 (pink) and 0 (orange). The pink and green curves are vertically offset by
−0.1 and −0.2 respectively for visual clarity of data. The solid black curves shows
the fit of the curves of g(2)(τ) α = 0.50 and 0.15 to Equations 5.6 and 5.5. (b)
Photon bunching amplitude g(2)(0) − 1 for different power fractions α between the
non-delayed light field E(t) and the total power after combining with the delayed
light field Ebun(t). The red points show the measured photon bunching amplitude
g(2)(0) − 1 extracted from the fit of second-order photon correlations g(2)(τ) to
Equations 5.5 and 5.6 for different α. The black solid curve shows the relationship
between photon bunching amplitude g(2)(0) − 1 and power fraction α between the
two modes using Equation 5.5, for a laser that fully emits coherent light, i.e. a
fraction of coherent light ρ = 1. The blue dashed curve shows the same relationship
accounting for the fraction of coherent light emitted by the laser ρ = 0.940 using
Equation 5.6.
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tions 4.5-4.7, the second-order photon correlation of Ebun is

g(2)(τ) = α2 + (1 − α)2 + 2α(1 − α) + 2r(1 − α) ∥⟨E∗(t)E(t + τ)⟩∥2

= 1 + 2α (1 − α)
∥∥∥g(1)(τ)

∥∥∥2
.

(5.5)

where E(t) is the electric field of the laser source.
To fit the second-order photon correlation g(2)(τ) of bunched light to Equation 5.5,

we require a suitable model for the interferometric visibility ∥g(1)(τ)∥. We assume
the laser emits a mixture of coherent light and broadband thermal light, which has
an interferometric visibility in the form of Equation 3.2:∥∥∥g(1)

mix(τ)
∥∥∥2

= ρ2
∥∥∥g(1)

coh(τ)
∥∥∥2

+ (1 − ρ)2
∥∥∥g(1)

unc(τ)
∥∥∥2

+ 2ρ(1 − ρ) ℜ[g(1)
coh(τ) g(1)∗

unc (τ)]

+ 2ρ(1 − ρ) ℜ[g(1)
coh(∆) g(1)∗

unc (∆)] .

We assumed that the light field uncorrelated to the coherent light to be broadband,
such that its coherence time τc is much shorter than the timing response of the
photodetectors. The convolution of this characteristic timescale with the detector
timing response leads to the measured interfometric visibility ∥g(1)

unc(τ)∥ ≈ 0 for the
light field uncorrelated to the coherent light in the mixture. We further assume a
Lorentzian spectral lineshape for the coherent light component in the mixture, and
the interferometric visibility for the light emitted by the laser is

∥∥∥g(1)(τ)
∥∥∥2

≈ ρ2 exp
(

−
∥∥∥∥2τ

τc

∥∥∥∥) , (5.6)

where ρ is the fraction of coherent light emitted by the laser. Using Equation 5.5
and 5.6, and the fraction ρ = 0.94 of coherent light emitted by the input laser, we
predict a photon bunching amplitude g(2)(0) − 1 = 0.44 for our bunched light source
at a power ratio α = 0.5.

5.3 Photon bunching related to phase fluctuations
To understand if the photon bunching in the bunched light source is related to its

phase fluctuations, we use interferometric photon correlations g(2X)(τ) to compare
the interferometric visibility-square ∥g

(1)
bun(τ)∥2 of the bunched light source with its

second-order photon correlation g(2)(τ).
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From Equation 5.4 the interferometric visibility of the bunched light is

∥∥∥g(1)
bun(τ)

∥∥∥ =
∥∥∥∥∥⟨E∗

bun(t)Ebun(t + τ)⟩
⟨E∗

bun(t)Ebun(t)⟩

∥∥∥∥∥
=
∥∥∥g(1)(τ)

∥∥∥+
√

α(1 − α)
[∥∥∥g(1)(τ − ∆bun)

∥∥∥+
∥∥∥g(1)(τ + ∆bun)

∥∥∥] ,

(5.7)

where the unindexed interferometric visibility ∥g(1)(τ)∥ terms are for the electric
field of the laser E(t). We note here that the terms containing ∆bun are due to
correlations of the light field with its own delayed field. To remove those terms, the
technique to generate the bunched light can be modified by replacing the delay fibre
with a phase modulator with a randomised input.

For a delay significantly longer than the coherence time of the light ∆ ≫ τc, the
interferometric visibility-square is
∥∥∥g(1)

bun(τ)
∥∥∥2

=
∥∥∥g(1)(τ)

∥∥∥2
+ α(1 − α)

[∥∥∥g(1)(τ − ∆bun)
∥∥∥2

+
∥∥∥g(1)(τ + ∆bun)

∥∥∥2
]

. (5.8)

Using Equation 5.5 and 5.8, the interferometric photon correlation (Equation 2.9)
for the bunched light source is

g
(2X)
bun (τ) = 1 + 2α (1 − α) − 1

2
∥∥∥g(1)(τ)

∥∥∥2

+ α (1 − α)
2

[∥∥∥g(1)(τ − ∆int)
∥∥∥2

+
∥∥∥g(1)(τ + ∆int)

∥∥∥2
]

− α (1 − α)
2

[∥∥∥g(1)(τ − ∆bun)
∥∥∥2

+
∥∥∥g(1)(τ + ∆bun)

∥∥∥2
]

,

(5.9)

where ∆int is the propagation delay in the asymmetric Mach-Zehnder interferometer
used to extract interferometric photon correlations g(2X)(τ), while the propagation
delay ∆bun is introduced in the asymmetric Mach-Zehnder interferometer to generate
the bunched light. Here, the interferometric visibility ∥g(1)(τ)∥ terms are for the
electric field of the laser.

We extract the interferometric photon correlations g(2X)(τ) by sending light
through an asymmetric Mach-Zehnder interferometer with a propagation delay
∆int ≈ 2 µs using an optical fibre about 400 m in length. We used the same
photodectors and timestamps as those used in extracting its second-order photon
correlation g(2)(τ) in Page 51.

The interferometric photon correlations g(2X)(τ) for power fractions α = 0 and
0.5 are shown in Figure 5.6. From the interferometric photon correlations g(2X)(τ),
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Figure 5.6: Interferometric photon correlations g(2)(τ) for (a) laser light, for a
power fraction α = 0, (b) bunched light source, for a power fraction α = 0.5. The
solid black lines are fitted curves to Equation 5.9. From the fit, we extracted the
characteristic timescale of interferometric visibility ∥g(1)(τ)∥ to be (a)τc = 194 ± 1 ns
and (b) τc = 193 ± 2 ns. The additional dips are centered around τ ≈ 1.4 µs are
attributed to correlations of the field with itself after delay ∆bun in Equation 5.8.

the distribution around zero-time difference τ ≈ 0 appears to be unimodal, showing
only a dip centered around τ = 0. This suggests that the photon bunching observed
is related to the phase fluctuations in the bunched light source. The fit of the
interferometric photon correlations g(2X)(τ) to Equation 5.9 had a reduced-χ2 = 1.09,
suggesting a good agreement with the model.

From the fit, we extracted a characteristic timescale τc = 193 ± 2 ns of the
interferometric visibility ∥g(1)(τ)∥. Using Equation 3.16, this translates to a 1.6 MHz
bandwidth or 3.4 fm linewidth for a central wavelength 780 nm. We divide the optical
power of our bunched light of 4 × 1016 photons per second by its spectral linewidth
to obtain its spectral brightness of this light source of about 1 × 1022 photons per
second per nm bandwidth.

Although the unimodal distribution suggests the photon bunching signature
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g(2)(τ) − 1 and interferometric visibility-square ∥g(1)(τ)∥2 have the same timescale
and profile, they do not cancel out completely here due to difference in amplitudes.
This means that the second-order photon correlation g(2)(τ) and interferometric
visibility-square ∥g(1)(τ)∥2 does not strictly follow the Siegert relation, unlike thermal
light. This is due to using only two independent emitters, whereas a “true” thermal
light source would have a large number of emitters. With an increased number
of cascaded Mach-Zehnder interferometers to create more paths as described in
Figure 5.2, we would expect the Siegert relation to be followed. Nevertheless,
the interferometric photon correlations g(2X)(τ) suggests that we have prepared a
bunched light source with the photon bunching from the phase fluctuations of the
laser.

In our experiment, we measured an attenuatation of 14.5 dB, mainly attributed
to losses from fibre optic splicing, mating, and coupling.

Summary
We presented a general approach towards generating bunched light from a

coherent light source. A coherent light field can be split into N different modes,
with each mode independently and randomly phase modulated, before combining
in a single mode again. Our approach towards this is to cascade a series of M

asymmetric Mach-Zehnder interferometers, which forms a multi-path interferometer
with 2M paths.

We demonstrated a bunched light source by sending laser light through a single
asymmetric Mach-Zehnder interferometer. This superposes the laser light field with
itself outside of its coherence time. The resulting output field can be modelled as
a superposition of two independent coherent fields which produces a theoretical
photon bunching amplitude g(2)(0) − 1 = 0.5. Experimentally, we observed a photon
bunching amplitude g(2)(0) − 1 = 0.437 ± 0.002.

From interferometric photon correlations g(2X)(τ), the coherence time τc of the
bunched light source is about 190 ns, translating to a linewidth approximately 3.4 fm.
At a power of 1 mW, this linewidth leads to spectral density of 1022 photons per
second per nm bandwidth, 10000 times higher in spectral density than the bunched
light source with the highest spectral density known to us in literature [4].
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The interferometric photon correlation g(2X)(τ) of the bunched light also suggests
that the photon bunching is related to the random phase fluctuations of the bunched
light source, which is attributed to quantum noise of the laser.
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Chapter 6

Summary and Outlook
The main result of this thesis was the presentation of an ultrabright narrowband

source of bunched light with a second-order photon correlation g(2)(0) = 1.437±0.002,
close to the theoretical value of g(2)(0) = 1.50 for this configuration. Using interfero-
metric photon correlations g(2X)(τ), a direct comparison between the interferometric
visibility ∥g(1)(τ)∥ and the second-order photon correlation g(2)(τ) of the bunched
was made, and it suggests that the photon bunching of the bunched light source is
related to phase fluctuations.

We measured an output power of 1 mW for the bunched light, which allows for
attenuation up to 140 dB by the propagation media before the signal is comparable
to noise in the single photon detectors. We also measured and a coherence time
of ∼ 190 ns for our bunched light source. This translates to a spectral brightness
of about 1022 photoevents per second per nanometer linewidth. This is 104 times
brighter than the brightest bunched light source known to us, which is based on a
laser operating below its lasing threshold [4]. The brightness can be easily increased
with a higher power laser input, and is only limited by the damage threshold of the
optics.

The characterisation techniques we developed from interferometric photon corre-
lations g(2X)(τ) was also applied to other sources. One technique was the ability to
extract the coherence time and fraction of coherent light as demonstrated in Chapter
3 and 5.

Another technique was to directly compare the interferometric visibility ∥g(1)(τ)∥
and the second-order photon correlation g(2)(τ) in a single measurement. From
this, we determine if photon bunching can be attributed to the light source’s phase
fluctuations. Using this technique, we showed that the emission from a mercury
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discharge lamp is indeed a source of thermal light. On the other hand, we show that
the photon bunching of laser light scattered off a rotating ground glass plate does
not purely originate from phase fluctuations.

Towards applications resilient to high losses

The bunched light source presented in this thesis have addressed the initial moti-
vation of a brighter narrowband bunched light source, remarkably without requiring
an external source of modulation. Future works may include demonstrations of this
light source in applications such optical ranging [4] and clock synchronisation [40,
41], in more adverse conditions such as greater losses from distance, propagation
media or less cooperative targets.

During the preparation of this thesis, we discovered that the method of sending
laser light through an asymmetric Mach-Zehnder interferometer has also been used
to generate random intensity spikes for applications in high bit rate quantum random
number generators [51, 52]. This further substantiates the potential of using the
quantum noise from a laser as a resource for randomness.

Interacting bunched light with quantum systems

Although there is a fundamental interest in studying interactions between atoms
and light of different statistics [75, 76], the popular focus of atom-light interaction
experiments tends to be on using coherent light sources and single photon sources [77–
79]. This may be substantiated by our failure to find reported experiments of atom-
light interactions with incoherent light sources during our literature search. Apart
from these interactions, other effects, such as stochastic resonance [80–82] in atomic
systems using incoherent light as a noise source, would also be of fundamental
interest to investigate.

Furthermore, there has been proposed techniques of using quantum repeaters
and memories to enhance the imaging capabilities of astronomical telescopes [83–
87]. Towards this application, preliminary studies of interaction between quantum
systems and incoherent light, which may be similar in nature to light from celestial
objects, has to be conducted.

A probable challenge in performing these experiments with incoherent light may
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be due to the low spectral density of existing incoherent light sources, which results in
a low probability of interaction, rendering experiments impractically time-consuming.
With our technique for a bright source of narrowband bunched light, along with the
other approaches highlighted in Chapter 5, these experiments may come closer to
realisation.

Further applications of interferometric photon correlations

This technique may be further applied to areas such as in laser physics, where one
may be interested in measuring the fraction of spontaneous emission that is emitted
into the laser mode [88, 89], or in continuous-variable quantum key distribution,
where one may be interested in characterising the amount of optical noise in the
channel or source, such as in [90].

This can complement the widely used second-order photon correlations g(2)(τ)
traditionally used to distinguish between light sources of different nature, such
as coherent and incoherent light. Challenges in clearly distinguishing between
coherent and incoherent light arise in situations such as, using detectors with limited
timing resolution [49], or unintended amplitude modulation of the light source [2].
Examples of unintended amplitude modulation include: scattering from interstellar
dust in observations of celestial light, such as astrophysical lasers [91–94] and from
technosignatures [95–97] or in random lasers [98–100], which relies on the scattering
of particles for optical feedback.

Even for well-established techniques, such as dynamic light scattering [14], which
uses the second-order photon correlation g(2)(τ) of laser light scattered from particles
to study the dynamics of particles, being able to also simultaneously extract the
interferometric visibility

∥∥∥g(1)(τ)
∥∥∥ from interferometric photon correlations g(2X)(τ)

may pave the way for more in-depth analysis. The required modifications from a
setup extracting second-order photon correlations g(2)(τ) to a setup extracting inter-
ferometric photon correlations g(2X)(τ) would not be complex; the main difference
is an additional interferometer.
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