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Abstract

The wave-like properties of photons gives rise to diffraction, or the bending of waves
when passing through an object or an aperture. Diffraction limits the resolution
of an aperture, with larger apertures being able to resolve smaller objects. This
project aims to use intensity correlation of photons to resolve objects that would
otherwise be unresolvable according to Rayleigh’s Criterion. The temporal and
spatial domain of intensity correlations provides information on the light source’s
spectral distribution and spatial intensity distribution. We recreate a bunched light
source in the lab with a semiconductor laser diode below threshold, or the point
where a laser diode transits to be a coherent light source. A temporal normalised
intensity correlation of 1.63 was obtained. Whilst spatial domain information was
not obtained, we list the problems and challenges faced during the setup process for
future research considerations.





Table of contents

List of Figures ix

List of Tables xiii

Nomenclature xv

1 Introduction 1

1.1 Coherence of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 First Order Correlation Function, g(1) . . . . . . . . . . . . . . 2

1.1.2 Second Order Correlation Function, g(2) . . . . . . . . . . . . . 4

1.2 Light Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Power-Current Curve . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.3 Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . 19

2 Temporal Correlation of Light 21

2.1 Temporal g(2) Measurements . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Spectral Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Coherence Time of Light . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Optical Bandpass Filter . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Solid Etalons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



viii Table of contents

3 Spatial Correlation of Light 35

3.1 Setup for Spatial Correlation Measurements . . . . . . . . . . . . . . . 37

3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Conclusion 43

References 45

Appendix A Experimental Plots and Photos 47

Appendix B Tuning Rate of Etalon 51



List of Figures

1.1 Angular resolution θ of an optical system with varying b from 0 m to
200 m. Plot shown is for λ = 500 nm . . . . . . . . . . . . . . . . . . . 2

1.2 Setup for measurement of temporal (b = 0) second order correlation.
Light is incident on a beam splitter, which directs light into two sepa-
rate detectors. The need for at least two detectors is to compensate
for the dead time of the other detector. One of the detectors has an
additional electronic delay to compensate for the dead time of the
correlator such as a timestamp unit. . . . . . . . . . . . . . . . . . . . 5

1.3 Photon behaviour for bunched, coherent and anti-bunched light. It
represents a snapshot in time where photons are propagating to the
right. τ corresponds to the temporal separation between the photons,
while τc corresponds to the time for which photons are correlated. . . 6

1.4 g(2)(τ) values for bunched and coherent light. The value of g(2)(τ = 0)
is 2 for bunched light and g(2)(τ) is 1 throughout for coherent light. . 7

1.5 Theoretical plot of spatial second order correlation g(2)(b,τ = 0) against
baseline b for a uniform intensity, circular, quasi-monochromatic light
source. First minima corresponds to a value of about 3.83. . . . . . . 8

1.6 Typical shape of a Power-Current curve of a laser diode . . . . . . . . 10

1.7 The semiconductor laser diode (LD) is connected to a laser diode
controller that varies the LD input current and the voltage across a
peltier element, that keeps the laser diode at a fixed temperature (20◦

C). Light is coupled into a single mode fibre (SMF) with collimating
lenses (CL) before incident on the detection area of the powermeter. . 12

PC4199 Honours Project in Physics



x List of Figures

1.8 Connection of the laser diode was via a 9-pin D-sub connector (1).
Temperature control was done using a Proportional-Integral-Derivative
loop controller connected to a Peltier element and a thermistor (blue
wires, 2). The L515A1 laser diode (3) is housed inside a thermally con-
ductive housing, which rests on top of another thermally conductive
layer (aluminium base), which is on top of a peltier element, with the
other side being a heat sink (black aluminium base, 4). . . . . . . . . . 12

1.9 Power output as measured using a Si photodiode, 0.1mA increments,
range: 0-50mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.10 Log-scaled output power. Range: 0-50 mA, 0.1 mA increments . . . . 13

1.11 Gaussian fit for data collected with OceanOptics USB spectrometer.
1 mA increments; 0-45 mA. Vertical error bars follows from error prop-
agation from fitted values. . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.12 Gaussian fit for data collected with OceanOptics USB spectrometer.
Range: 30-32 mA, 0.1 mA increments . . . . . . . . . . . . . . . . . . . 16

1.13 Spectrum of light from L515A1 laser diode with an input current of
25 mA. The double Gaussian (red) has a lower reduced-χ2 of 2.87,
lower than 9.27 for a single Gaussian fit (blue). Consistently higher
reduced-χ2 is seen for a current values ranging from 10mA to about
31mA, where the spectrum was limited by the resolution of the spec-
trometer (1.5nm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.14 Finding of FWHM via intersection of half-maximum line and spec-
trum data joined with straight lines. Example used is for 25mA as
well. The FWHM obtained for this example is 7.75nm. . . . . . . . . . 18

1.15 FWHM obtained via intersection of half-maximum line and spectrum 19

2.1 Setup for g(2)(τ) measurements. Flow of the setup is explained fur-
ther below. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Temporal second order correlation with an input current of 30 mA (below
threshold current of 31 mA). Vertical error bars are assumed to be
Poissonian (ie. square root of the coincidence count at a data point).
Equation of fit used is a linear fit. Comparison with a exponential fit
in equation (1.9) led to fitting errors, which prompted me to fit with a
linear fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



List of Figures xi

2.3 Spectrum measured by reflective grating spectrometer (1.5nm resolu-
tion) after a bandpass filter. Laser diode at an input current of 25 mA.
Bandpass tilted at an angle of about 25◦ from the incident light. . . . 26

2.4 Transmission through a solid etalon. Peak to peak separations are
the free spectral range (FSR), while λ refers to the wavelength of the
transmitted light, which are integer multiples of half-wavelengths. . 27

2.5 Spectral filtering with 1 mm thick solid etalon for g(2)(τ) measure-
ments. Etalon is placed such that the back-reflection off its surface
coincides with the downstream laser diode light, which maximises
interference inside the etalon and therefore higher transmission ratios.
Refer to Appendix A for a photo of the setup. . . . . . . . . . . . . . . 29

2.6 Etalon holder with thermistor (1) and two 30 W through-hole resis-
tors (2). The 1 mm etalon (3) is held in place with an aluminium
ring (4), which reduces direct air contact with the etalon, which can
result in temperature fluctuations. . . . . . . . . . . . . . . . . . . . . 29

2.7 Heating curve of etalon at constant 10 V. Time constant tc was about
219 s. Black points are experimental data while the red curve is the
fitted curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Scanning of spectrum at 35 mA (above threshold) with etalon heating
at a constant 10 V. Crosses (black) indicate experimental data collected
that are joined by straight lines (red). Temperature range of 30◦ C to
115◦ C, which covers more than 3 FSR (100GHz) of the 1mm etalon.
Note that the linewidth of the light at 35 mA is tens of GHz wide,
or pm wide, which is better than the resolution limit of a reflective
grating spectrometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9 g(2)(τ = 0) values with varying current after temperature tuning
of the etalons. Error bars are shown in black. For varying input
currents of 30.3 mA to 30.6 mA in increments of 0.1 mA with etalon at
Tetalon = 42.450◦C, the highest g(2)(τ = 0) value is when input current
is 30.4 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.10 Temporal correlation with laser diode input of 30.4mA, with a set
temperature of 42.450◦C. Fitted values using equation 1.9 returns a
coherence time of 14.9 ns with peak g(2)(τ) of 1.63. Error bars are
again assumed to be Poissonian. . . . . . . . . . . . . . . . . . . . . . 33

PC4199 Honours Project in Physics



xii List of Figures

3.1 Experimental setup for spatial second order correlation measure-
ments. Aperture used is a 150 µm pinhole; iris used is 1 mm wide;
distance from source to detection z: 0.50 m. Refer to Appendix A for a
photo of the setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Temporal second order correlation measurement as a preliminary
check with no pinhole and iris. Tetalon = 42.200◦C, laser input current:
30.4 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.1 Single and double Gaussian fits for spectrum data at varying input
currents. Measurements taken by OceanOptics spectrometer. . . . . . 47

A.2 Green lines indicate path of light. The laser diode (1) is coupled into
a multimode fibre that is mated to a single mode fibre (2). Light is
then incident on a half-wave plate (3) and a 1 mm thick etalon. Trans-
mitted light then passes through a linear polariser (5) and a bandpass
filter (6) before it is incident on a polarising beamsplitter (7), with light
from each arm coupled into a multimode fibre that is connected to
passively quenched avalanche photodiodes (8). They are electroni-
cally connected to a timestamp unit (not shown). Orange fibres are
multimode fibres while yellow fibres are single mode fibres. . . . . . 48

A.3 Green lines indicate path of light. After light from the laser diode
has passed through a multimode fibre and is collimated with an
aspheric lens, it is incident on a film linear polariser (1) before it
hits the 150 µm pinhole (2). It is then incident on a non-polarising
beamsplitter (3). We first setup the reflected arm, which consists of
a variable iris (minimum aperture size of 1 mm) on a X-Y translation
stage, with an aspheric lens held by a tip-tilt stage in a cage system (4).
After passing through the single mode fibre, it is then incident on the
1 mm etalon (5) before passing through a optical bandpass filter (6).
Another non-polarising beam splitter directs light into two separate
aspherics and connected to two detectors (7) with multimode fibres.
They are then electronically connected to a timestamp unit (not shown)
via NIM cables (white cables). . . . . . . . . . . . . . . . . . . . . . . . 49



List of Tables

B.1 Empirical Sellmeier coefficients for wavelength-dependent Sellmeier
equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.2 Empirical Sellmeier coefficients for wavelength-temperature-dependent
Sellmeier equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

PC4199 Honours Project in Physics





Nomenclature

Other Symbols

b Baseline Separation between 2 Detectors

J1 First Order Bessel Function of the First Kind

FSR Free Spectral Range

F Fourier Transform

FWHM Full-Width at Half-Maximum

λ/2 Half-Wave plate

HBT Hanbury-Brown Twiss

λ Wavelength in medium

LED Light-Emitting Diode

∆ω Spectral Linewidth

mas Milli-Arcsecond

ν Frequency

n Refractive Index

SNR Signal-To-Noise Ratio

τ Timing separation between photoevents

τc Coherence Time

Acronyms / Abbreviations

PC4199 Honours Project in Physics



xvi Nomenclature

APD Avalanche Photodiode

BS Beam-Splitter

CL Collimating Lens

LD Laser Diode

LP Linear Polariser

MMF Multi Mode Fibre

NPBS Non-Polarising Beam-Splitter

PBS Polarising Beam-Splitter

PC Physical Contact

SMF Single Mode Fibre



Chapter 1

Introduction

Print out a piece of paper with a letter ’O’ in the middle. Place it a metre away, you
will still be able to make out the shape of the letter. Place it a kilometre away, are you
still able to tell if it is a letter ’O’? Probably not. The resolution limit of our eyes is
about half a degree, or 0.5 arcminutes. That means that for the human eye to be able
to distinguish the letter ’O’ at a kilometre away, the letter has to be at least 8.7-metres
wide. This is known as the resolution limit of the optical system, in this case – the
resolution limit of the human eye.

When light passes through an aperture, it gets diffracted and the image formed
has a characteristic pattern depending on the shape of the aperture. For a circular
aperture like for the human eye, the image has an airy disk pattern. Different points
of the source form different images, and the point where the images cannot be
differentiated from one another is known as the resolution limit. The resolution limit
of optical systems is commonly described by the Rayleigh’s Criterion [1]:

θ =
1.22λ

b
, (1.1)

where θ refers to the angular resolution, λ the wavelength of light involved and
b the aperture size of the optical system.

PC4199 Honours Project in Physics



2 Introduction

A graphical representation of equation (1.1) is shown below:

Fig. 1.1 Angular resolution θ of an optical system with varying b from 0 m to 200 m. Plot
shown is for λ = 500 nm

In order for better resolution, such as sub-milliarcsecond (mas) angular resolution,
aperture sizes greater than 125 m is required. Single mirror and lens with sizes of
this magnitude are impractical given the cost and mechanical equipment required
to keep them stable. Instead, we can use interferometry techniques. Interferometry
works on the coherence property of light in time and space.

1.1 Coherence of Light

1.1.1 First Order Correlation Function, g(1)

One such interferometry technique is the Michelson interferometry, which examines
the correlation of light fields. The correlation of light fields is given by the first order
correlation function g(1). It is defined as:

g(1)(τ,r1,r2) =
⟨ϵ∗(t,r1)ϵ(t + τ,r2)⟩√

⟨|ϵ(t,r1)|2⟩ ⟨|ϵ(t + τ,r2)|2⟩
, (1.2)

with the ⟨...⟩ representing the statistical average over a long time interval, ϵ(t,r1,r2)

being the electric field of the light beam, τ the timing separation between the detected
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light fields and r1 and r2 the position transverse to the direction of propogation of
the light field.

For zero spatial separation (ie. r1 = r2), also known as the autocorrelation of the
electric field, by the Wiener-Khintchine Theorem [2, 3], the Fourier transform gives
us the spectral distribution S(ν) of the light source:

S(ν) ∝ F{g(1)(τ,r1 = r2)}, (1.3)

where F is the Fourier transform.

For zero timing separation between the light fields (ie. τ = 0), , the spatial first
order correlation function γ12 gives:

γ12 =
⟨ϵ∗(t,r1)ϵ(t,r2)⟩√

⟨|ϵ(t,r1)|2⟩ ⟨|ϵ(t,r2)|2⟩
, (1.4)

For a light source with angular distance much smaller than the distance between
the source and detection plane, van-Cittert Zernike Theorem [4, 5] states that the
spatial first order correlation function γ12 is proportional to the Fourier transform of
the spatial intensity distribution of the source S(u,v). In particular, for a spatially
incoherent, uniform intensity, circular, quasi-monochromatic light source, the Fourier
transform of the spatial intensity distribution is given as:

S(u,v) = F
{

2J1(πθUDb/λ0)

πθUDb/λ0

}
, (1.5)

where J1 is the first order Bessel function of the first kind, θUD the angular diameter
of the source, b = |r1 − r2| the baseline, (u,v) the coordinates in Fourier space and
λ0 the wavelength of light involved.

By obtaining both spectral distribution and spatial intensity distribution of the
light source, a g(1) interferometer can reconstruct the image of the light source.

The spatial intensity distribution of the light source is measured by the fringe
visibility. The fringe visibility V, of an interferometer is defined as:

V =
Imax − Imin

Imax + Imin
= |γ12| , (1.6)
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4 Introduction

where Imax and Imin refers to the maxima and minima of the interference fringes
respectively. The fringe visibility is equal to the modulus of the spatial first order
correlation function. When Imin = 0, the visibility is highest at 1, while visibility is
minimum at 0 for Imax = Imin.

However, since first order correlation function refers to the correlation of light
fields, stabilisation of phase fluctuations to the order of photon wavelengths is
required.

Consider a quasi-monochromatic field ϵ(t) with a centre frequency ω0 that varies
with time such that

ϵ(t) = ϵ0e−iω0teiϕ(t), (1.7)

with ϕ(t) being the time varying phase information. Substituting this equation to
(1.2), we obtain

g(1)(τ) = e−iω0τ
〈

ei[ϕ(t+τ)−ϕ(t))]
〉

, (1.8)

From this, we can see that the factor of
〈

ei[ϕ(t+τ)−ϕ(t))]
〉

, which averages to 0
if the timing separation τ is much larger than the coherence time, since ϕ(t + τ)

will be increasingly uncorrelated to ϕ(t) as τ increases. Similarly, for τ << τc, the〈
ei[ϕ(t+τ)−ϕ(t))]

〉
term averages to 1. Since there is a dependence on the ϕ(t) term,

phase shifts in the order of wavelengths can change the visibility.

Instead of the need to stabilise the optics to sub-wavelength precision or extra
compensation to offset atmosphere seeing effects [6], we consider using intensity
interferometry, or the second order correlation, which is the correlation of light
intensities.

1.1.2 Second Order Correlation Function, g(2)

The second order correlation, also known historically as the Hanbury-Brown Twiss
(HBT) effect, is the correlation of intensities at two detectors observing the same light
source. This correlation of intensities was first introduced March of 1954 [7] and
later used to measure the angular diameters of thirty-two stars [8] with the Narrabri
Stellar Intensity Interferometer (NSII). Using telescopes in the form of detectors
spaced at distances up to 188 m apart, the NSII was able to resolve stars of angular
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resolutions in the order of 0.1 mas (about 1/3600000 of a degree). Its resolving power
back in 1974 exceeds that of the largest single aperture optical telescope in the world
today, the Gran Telescopio in Canarias, with a combined aperture size of 10.4 m and
able to resolve just about 10 mas for visible wavelengths.

The relation between aperture size and angular resolution is again described by
Rayleigh’s Criterion in equation (1.1). With increasing aperture size, both real and
synthetic (in the form of multiple telescopes spaced apart), objects that span a small
angular separation can be resolved. The NSII is an example of a synthetic aperture
interferometer with two telescopes spaced up to 188 m apart.

The second order correlation function g(2)(b,τ) is defined as:

g(2)(b,τ) =
⟨I(t) · I(b, t + τ)⟩
⟨I(t)⟩ ⟨I(b, t + τ)⟩ ,

where t is the time at which a photoevent is detected and recorded, b the baseline
and τ the timing separation between each photoevent. A drawing of a common
setup used to measure the second order correlation function is shown in Fig.1.2.

Correlator

Detector 1

Detector 2

Beam 
Spli�er

Light Source

Delay

Fig. 1.2 Setup for measurement of temporal (b = 0) second order correlation. Light is
incident on a beam splitter, which directs light into two separate detectors. The need for at
least two detectors is to compensate for the dead time of the other detector. One of the
detectors has an additional electronic delay to compensate for the dead time of the
correlator such as a timestamp unit.
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6 Introduction

Since intensity is directly proportional to the photoevents, we can rewrite the
temporal second order correlation function as

g(2)(τ) =
⟨n1(t) · n2(t + τ)⟩
⟨n1(t)⟩ ⟨n2(t)⟩

where ⟨...⟩ represents the average over a time interval, n1 and n2 the number of
photoevents detected at detectors 1 and 2 respectively (as shown in Fig. 1.2). g(2)(τ)
can be thought of as the ratio of coincident photoevents at separate detectors 1
and 2 over the product of independent/single photoevents at each detector. When
describing this ratio of correlation between photons, the correlation is present for
coherence time τc.

time t

time t

time t

Coherent Light

Bunched Light

Anti-Bunched Light

τc

τ

τ

τ

Fig. 1.3 Photon behaviour for bunched, coherent and anti-bunched light. It represents a
snapshot in time where photons are propagating to the right. τ corresponds to the temporal
separation between the photons, while τc corresponds to the time for which photons are
correlated.

With reference to Fig. 1.3, for bunched light, such as chaotic light or thermal
light, photons tend to travel in a bunch for short timescales (in the order of ps for
blackbody radiation) corresponding to the coherence time. Chaotic light is radiation
as a result of randomness of the excitation and phase interruption process in atomic
collisions, such as atomic collisions in blackbody radiation.

For coherent light, such as laser light, photons arrive at the detector at random
time intervals. There is a third kind of light, known as anti-bunched light. Photons
tend to prefer to space out as evenly as possible. An example of such a light source
is light from quantum dot device.

Within this timescale τc, coherence between light beams is present when the
superposition of these light beams results in a spatially fixed interference pattern [9].
The probability of coincident photoevents is greater than the expected for random
photoevents, leading to a g(2)(τ < τc) > 1. At timescales longer than the coherence
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time, superposition of light beams do not have a fixed interference at the plane of
detection, leading to g(2)(τ > τc) = 1.

For chaotic light with a lorentzian spectral linewidth, the second order correlation
function is given by [10]:

g(2)(τ) = 1 + e−
2|τ|
τc , (1.9)

which is the Fourier transform of a Lorentzian spectral distribution. Note that
g(2)(τ = 0) returns a value of 2 and decays to 1 as τ >> τc.

For coherent light, there is no correlation between photoevents and g(2)(τ) = 1
for all τ. For anti-bunched light, there is anti-correlation between photoevents and
g(2)(τ = 0) −→ 0.

A plot that summarizes the second order temporal correlation function g(2)(τ)
for bunched and coherent and light is shown in Fig. 1.4. The plot for bunched light
assumes a lorentzian spectral linewidth.

Fig. 1.4 g(2)(τ) values for bunched and coherent light. The value of g(2)(τ = 0) is 2 for
bunched light and g(2)(τ) is 1 throughout for coherent light.

PC4199 Honours Project in Physics



8 Introduction

For chaotic light (also known as thermal light), the second order correlation
function g(2)(b,τ) is related to the first order correlation function g(1)(b,τ) in the
Siegert relation [11]:

g(2)(b,τ) = 1 +
∣∣∣g(1)(b,τ)

∣∣∣2 , (1.10)

which removes the phase information ϕ(t) through the modulus. However, the
limitations include the need for a chaotic light source, as well as poor signal-to-noise
ratio (SNR).

By incorporating the Siegert relation (1.10) with van-Cittert Zernike theorem (1.5),
we obtain the following relation:

g(2)(b,τ = 0) = 1 +
∣∣∣∣2J1(πθUDb/λ0)

πθUDb/λ0

∣∣∣∣2 . (1.11)

Equation (1.11) can be graphically plotted as such:

Fig. 1.5 Theoretical plot of spatial second order correlation g(2)(b,τ = 0) against baseline b
for a uniform intensity, circular, quasi-monochromatic light source. First minima
corresponds to a value of about 3.83.

With reference to Fig.1.5, the spatial second order correlation g(2)(b,τ = 0) de-
creases with increasing b, or decreasing correlation in space as the detectors move
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further apart, assuming other factors θUD and λ0 are constant. From the same figure,
the theoretical plot intersects with the horizontal axis at a value of 3.83. If we were
to equate the intersection point as such

πθUDb
λ0

= 3.83, (1.12)

we then arrive at

θUD =
1.22λ0

b
, (1.13)

which is Rayleigh’s Criterion. By using the relation in equation (1.11), varying b
allows us to obtain the spatial distribution of the light source. The first minima of a
measurement in g(2)(b,τ = 0) tells us the angular diameter of the light source.

While the NSII was able to measure the angular diameter of stars, it was unable to
determine the spectral properties of stars, which can be obtained from the temporal
second order correlation. A major limitation back then was the timing inefficiencies
of detectors, with low quantum efficiencies and long dead time.

With advances in detectors having higher quantum efficiencies and shorter
dead times, hopes of obtaining information on spectral distribution is possible. In
2014, the temporal correlation of intensities from our very own star, the Sun, was
measured [12]. It was the first temporal correlation measurement of a blackbody.
Temporal correlation of intensities of pseudothermal light sources have also been
measured. Examples of pseudothermal light sources include laser scattering off a
rotating ground glass [13], which introduces phase randomisation dependening on
the frequency of rotation, as well as laser dispersing through a cloud of microspheres
a few µm wide [14], which also causes phase randomisation of light passing through
microspheres undergoing Brownian motion.

In this project, we aim to create a lab based setup to image a chaotic/thermal
source. By obtaining both the temporal and spatial correlation of intensities of the
source, we can then obtain the spatial intensity distribution along with the spectral
distribution distribution. Accomplishing this indicates the potential of intensity
interferometry for astronomy purposes in the visible spectrum of light.

PC4199 Honours Project in Physics



10 Introduction

1.2 Light Source

First, we aim to recreate a light source that has bunching in the lab with for intensity
interferometry. Some of the options include using a Mercury low pressure vapour
tube, a light-emitting diode (LED) as well as blackbody sources such as the Sun.
However, due to the low power spectral density of sources such as a Mercury low
pressure vapour tube, we look for other sources with a high power spectral density.
Lasers came to mind as they have high power and narrow linewidths. However,
a laser is a source of coherent light, which does not exhibit bunching. But, if the
input current to the laser diode is sufficiently low, the laser diode can behave as a
light-emitting diode, which is a source of bunched light.

Therefore, in the subsequent sections, we use a visible wavelength (rated at
515nm), gallium nitride (GaN) semiconductor laser diode (model L515A1 from Thor-
labs) and run it at sufficiently low current levels.

There are two main regions that a semiconductor laser diode can operate in, one
being a region of spontaneous emission and the other being simulated emission.
The point at which this transition occurs is also known as the lasing threshold.

Ith Input Current
I (A)

0

Output 
Power

"LED" "Laser"

Fig. 1.6 Typical shape of a Power-Current curve of a laser diode
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In the region below lasing threshold Ith, spontaneous emission, or photons
released as a result of transition of atoms from a higher energy level to a lower energy
level. Spontaneous emission results in photons released in random directions, in an
incoherent manner. Light from semiconductor laser diode in this region behaves
like a LED, or bunched light.

Above the lasing threshold, additional energy from increasing input current
to the laser diode is passed into the coherently oscillating cavity mode. Photons
released as simulated emission exit the cavity in the semiconductor laser diode and
behaves like a laser.

1.2.1 Power-Current Curve

In order to create the bunched light source, we need to determine where the threshold
lies and to run the semiconductor laser diode below the threshold. One way to
determine this region would be to measure the output power P as a function of the
input current I of the semiconductor laser diode.

Output power is measured through the use of a Silicon photodiode (model
Hamamatsu S5107) that generates a photocurrent IPD, which is converted to incident
power through

P =
IPD

R
(1.14)

where R is the responsitivity of the photodiode at a certain wavelength.
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A schematic setup for power-current measurements is shown below:

From Laser
Diode

Controller

Mirror

Mirror

SMF

CL

LD CL

Powermeter

Fig. 1.7 The semiconductor laser diode (LD) is connected to a laser diode controller that
varies the LD input current and the voltage across a peltier element, that keeps the laser
diode at a fixed temperature (20◦ C). Light is coupled into a single mode fibre (SMF) with
collimating lenses (CL) before incident on the detection area of the powermeter.

A picture of the laser diode housing is shown below:

Fig. 1.8 Connection of the laser diode was via a 9-pin D-sub connector (1). Temperature
control was done using a Proportional-Integral-Derivative loop controller connected to a
Peltier element and a thermistor (blue wires, 2). The L515A1 laser diode (3) is housed inside
a thermally conductive housing, which rests on top of another thermally conductive
layer (aluminium base), which is on top of a peltier element, with the other side being a heat
sink (black aluminium base, 4).
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By varying the laser diode input current and measuring the output power upon
conversion based on equation 1.14, we can obtain the results shown in Fig. 1.9.
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Piecewise-Linear Fit:
Threshold: 29.7211 ± 0.0003
m1: 0.002753 ± 0.000001
m2: 1.710746 ± 0.000003
Reduced- 2: 0.0237

Fig. 1.9 Power output as measured using a Si photodiode, 0.1mA increments, range: 0-50mA

Power-current (P-I) measurements were done from the range of 0 - 50 mA in
increments of 0.1 mA, with the process automated using a Python script. Comparing
the P-I curve with the illustration in Fig. 1.6, we can see that the threshold is a
bit higher than 30 mA. I attempted to use a piecewise-linear fit to the experimental
data and obtained a threshold current value of about 29.7 mA. We can also take the
logarithm of the output power:
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Fig. 1.10 Log-scaled output power. Range: 0-50 mA, 0.1 mA increments
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From the log-scaled P-I curve, the steepest change (0.2 µW at 30 mA to 3.65 µW
at 32 mA) in output power is around the range of 30 mA to 32 mA. The P-I curve
offers a simple check on where the threshold could be.

1.2.2 Spectrum

The threshold of a semiconductor laser diode can also be determined by looking
at the spectrum of the laser diode. As light from the laser diode transits from a
broadband LED light to a narrowband "laser" light, we expect to see the linewidth
(Full-Width at Half-Maximum, FWHM) of the spectrum decrease past the lasing
threshold.

Using an OceanOptics USB-type reflective grating spectrometer, rated for opera-
tion in wavelengths between 399 nm and 731 nm, the spectrum of the laser diode
for varying input currents was collected. At the lasing threshold, oscillation of
a single resonant mode occurs, such that energy is only pumped into this mode
above the threshold. This results in a narrow spectral linewidth (FWHM) past the
threshold. Thus, by looking at the FWHM of the spectrum at each current value, we
can determine the lasing threshold.

A convenient way at looking at the FWHM of a spectrum would be to fit a curve
to the experimental data points and obtain the FWHM from the fitted plot. With a
Gaussian amplitude fit:

f (x) = C0 + A · e−
(x−µ)2

2σ2 (1.15)

where A, µ, σ are the amplitude, mean and standard deviation of the Gaussian
curve respectively and C0 is a constant. We can obtain the FWHM of the fitted curve
via

FWHM = 2
√

2ln2 · σ (1.16)
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By varying the input current to the laser diode from 0 mA to 45 mA in 1 mA
increments, fitting each spectrum to a Gaussian, we obtain:
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Single Gaussian Fit

Fig. 1.11 Gaussian fit for data collected with OceanOptics USB spectrometer. 1 mA
increments; 0-45 mA. Vertical error bars follows from error propagation from fitted values.

From figure 1.11, there are 2 clear regions that separate the input current values,
one being the region lesser than 31 mA, and another region larger than 31 mA. The
first region, or the region of spontaneous emission of the laser diode, the FWHM is
tens of nm wide. The simulated emission region is where the FWHM is just about
1 nm wide, which is limited by the resolution of the spectrometer (about 1.5 nm). The
transition between these 2 regions occurs in the range of 30-32 mA, which is similar
to our power-current curve data.
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In order to have a better confidence, we measure the spectrum in smaller incre-
ments of 0.1 mA instead, and the result is as follows:
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Fig. 1.12 Gaussian fit for data collected with OceanOptics USB spectrometer. Range:
30-32 mA, 0.1 mA increments

This suggests that the transition between spontaneous and stimulated emission
of the laser diode, or threshold, occurs when the laser diode input current is around
the 30.9 mA to 31.3 mA, as given by a more distinct drop in the FWHM from about
1.5 nm at 30.9 mA to less than 1 nm at 31 mA.

However, a Gaussian fit (single Gaussian to be specific) might not be the most
appropriate fit, which can be seen visually when looking at the spectrum. We
attempt to fit a double Gaussian instead, with the equation of fit given as:

h(x) = C0 + A1 · e
− (x−µ1)

2

2σ2
1 + A2 · e

− (x−µ2)
2

2σ2
2 , (1.17)

where the parameters are the same as for a single Gaussian fit, but now with two
amplitudes, mean and standard deviations.
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An example of the spectrum measured using the same spectrometer (OceanOp-
tics), with a comparison between a single Gaussian fit and double Gaussian fit is
shown below:
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Double Gaussian Fit: Reduced- 2 = 2.87
Single Gaussian Fit: Reduced- 2 = 9.27

Fig. 1.13 Spectrum of light from L515A1 laser diode with an input current of 25 mA. The
double Gaussian (red) has a lower reduced-χ2 of 2.87, lower than 9.27 for a single Gaussian
fit (blue). Consistently higher reduced-χ2 is seen for a current values ranging from 10mA to
about 31mA, where the spectrum was limited by the resolution of the spectrometer (1.5nm).

From Fig. 1.13, we can see that a single Gaussian fit does not fit well with the
spectrum data. The better fit with a double Gaussian fit could suggest that there
are two main emission spectrum, one being a broadband emission and the other
corresponding to the resonant cavity frequency of the laser diode. For the spectrum
for 25 mA (Fig. 1.13), with reference to equation (1.17), we obtain A1 = 771 ± 7,
µ1 = 525.7 ± 0.1 nm and σ1 = 15.2 ± 0.1 nm as the broadband spectrum. Value of
A2 = 930 ± 10, mu2 = 516.94 ± 0.04 nm and σ2 = 3.50 ± 0.05 nm was obtained for the
narrowband spectrum corresponding to the resonant cavity frequency of the laser
diode. As the input current increases, the two peaks of a double gaussian fit moves
towards a similar central wavelength of about 516 nm. Reduced-χ2 values for single
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18 Introduction

and double Gaussian fit are relatively similar as well. Additional spectrum fits for
varying input currents can be found in Appendix A.

Note that in Fig. 1.13, there are some smaller peaks in the 450 nm, 650 nm and
700 nm range. They are present throughout the spectrum data collected within
the same day, which could be due to noisy pixels on the imaging strip of the USB
spectrometer, or constant ambient light from unknown sources. However, since
these peaks are far away from the wavelength we are using (around 515 nm), we
will ignore this.

Another way of measuring the FWHM would be to measure the full-width at
half maximum, which is the half way mark between the data point with the highest
intensity value and the mean ambient intensity value when the laser is off. By
obtaining the width between the two points of intersection of the half-maximum
horizontal line and the spectrum data, the FWHM can be calculated. An illustration
is shown in Fig. 1.14.
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Fig. 1.14 Finding of FWHM via intersection of half-maximum line and spectrum data joined
with straight lines. Example used is for 25mA as well. The FWHM obtained for this
example is 7.75nm.

Applying this method and iterating with a script throughout the range of input
current 0 - 50 mA in 1 mA as well as 30 - 36 mA in 0.1 mA increments, we obtain
again a sharp drop in the FWHM values around the 31 mA mark (1 nm at 30.9 mA to
0.7 nm at 31 mA), as shown in Fig. 1.15.
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Fig. 1.15 FWHM obtained via intersection of half-maximum line and spectrum

Hence, we define 31 mA as the threshold current.

1.2.3 Power Spectral Density

The power spectral density of a thermal light source is related to its temperature in
the relation:

S(ν) =
hν

exp(hν/kBT)− 1
(1.18)

In order to generate thermal light that has a high spectral distribution, we require
light from the laser diode to have a high power output and a narrow linewidth,
while still below the threshold current. Thus, we intend to run the laser diode at
below 31 mA to maximise the spectral distribution while still being a thermal light
source.
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Chapter 2

Temporal Correlation of Light

With the semiconductor laser diode running at below threshold, we expect there to
be bunching (g(2)(τ = 0) > 1). We proceed with measurements of temporal second
order correlation.

2.1 Temporal g(2) Measurements

For measurements of g(2)(τ), we improve on the setup from Fig. 1.2.

From Laser
Diode

Controller

APD

APD Timestamp

Mirror

CL

CL

CL

CL

LD CL

Delay

PBSλ/2 LP

Mirror

SMF
PC/PC

MMF

Fig. 2.1 Setup for g(2)(τ) measurements. Flow of the setup is explained further below.

With reference to Fig. 2.1, the flow of the setup is as such. A semiconductor
laser diode (LD) from ThorLabs (model L515A1), with a manufacturer-stated centre
wavelength of 515 nm at 25◦C, is connected to a laser diode controller unit. The
laser diode controller is a field-programmable gate array (FPGA) unit capable of
controlling the input current supplied to the laser diode, as well as temperature
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22 Temporal Correlation of Light

control through the use of a thermoelectric peltier element and a thermistor. The
voltage across the peltier element is adjusted with a PID loop, based on temperatures
measured by the thermistor. Temperature of the laser diode was kept at 20◦C.

Light from the laser diode is collimated using an aspheric collimating lens (CL)
before reaching two mirrors. The combination of two mirrors, each on a tip-tilt
mount, allows for four degrees of freedom when coupling laser diode light into the
multi-mode fibre (MMF), which is connected to a single mode fibre (SMF) with a flat
physical contact mating sleeve (PC/PC).

The choice of using a single mode fibre is to select a single spatial mode of light
from the laser diode. The temporal second order correlation function can also be
given by [15] as:

g(2)(τ) = 1 + β|g(1)(τ)|2, (2.1)

where β = 1/M is a factor accounting for the loss of coherence due to a number
M of spatial and polarization modes. For single polarization light from a point
source (such as an unresolved star), M takes the value of 1. Thus, the theoretical
value at zero delay is g(2)(τ = 0) = 2, or the contrast C = g(2)(0)− 1 is 1 for a spatially
coherent source. In order to maximise the g(2) signature, we select a single spatial
mode using the single mode fibre. Due to experimental equipment being imperfect,
as per all other equipment, we do not expect the single mode fibre to only allow a
single spatial mode to pass through.

Continuing the flow of the setup, a half-wave plate (λ/2-plate), when paired with
a linear polariser (LP), balances and maximises the count rates at each avalanche
photodiode (APD) respectively. Since the light from the laser diode is linearly
polarised, the linear polariser was first inserted to maximise counts on both the
reflected paths of the polarising beam splitter (PBS), before the half-wave plate is
rotated to balance the counts. Reason behind the need to balance count rates in both
reflected and transmitted arms is to maximise the coincidence counts. As mentioned
in the earlier section, the need to split the beam into two separate paths is to account
for the dead time of the other detector. The APDs are electronically connected via
BNC cables to a timestamp unit which timestamps photoevents. One of the APD
has an additional 13 m of coaxial cable, which introduces a timing delay of about
65 ns. This is to account for the dead time of the timestamp unit of about 2 ns.
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The APD used is a passively quenched Perkin Elmer C30902S, which has a timing
resolution (FWHM) of about 1.2 ns [12].

Results and Discussion

With the setup as shown in Fig. 2.1, temporal second order correlation data was
obtained after running a script that translated timestamp information to coincidence
events, as well as the normalised coincidence events. Once again, for a Lorentzian
linewidth bunched light, the equation is given by equation (1.9). Running measure-
ments for the laser diode with input current ranging from 28 mA to 33 mA in 1 mA
increments, an example plot for a current value of 30 mA with a linear fit is shown
below:

0 100 200 300 400 500
Timing Separation  [ns]

0.96

0.98

1.00

1.02

1.04

1.06

g(2
) (

)

1900

1950

2000

2050

2100

2150

2200

Co
in

cid
en

ce
 C

ou
nt

s

Equation of fit: N( ) = m*  + c
m: 0.00 ± 0.02
c: 2054 ± 6
Reduced- 2: 1.08

Fig. 2.2 Temporal second order correlation with an input current of 30 mA (below threshold
current of 31 mA). Vertical error bars are assumed to be Poissonian (ie. square root of the
coincidence count at a data point). Equation of fit used is a linear fit. Comparison with a
exponential fit in equation (1.9) led to fitting errors, which prompted me to fit with a linear
fit.

With reference to Fig. 2.2, we can see that a linear fit returns us a g(2)(τ) value of
roughly 1 throughout the range of 0 ns to 500 ns, with a majority of data points within
1σ poissonian noise deviation from the equation of fit. There is however, a possible
peak of g(2) = 1.05 at when of τ = 80 ns, but since it is about 15 ns (corresponds to a
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3 m electronic delay, as electronic signals move at two-thirds the speed of light in
BNC cables) away from the expected bunching location (65 ns), we do not consider
it as possible bunching of light from the laser diode at 30 mA.

While a linear fit might be more suitable than an exponential fit in this case, we
also note that there are possible periodic patterns in the plot of g(2)(τ) in the order
of about 100 ns.

The second order temporal correlation function g(2)(τ) is also related to the
timing resolution of the detectors used as given by [16] as:

g(2)(τ = 0)− 1 ∝
τc

τt
, (2.2)

where τt refers to the timing resolution of the detector used (1.2 ns for C30902S APD)
and τc, as mentioned in the earlier section, is the coherence time of the light. We
suspect that it could be due to a low ratio of τc/τt.

Based on the relation seen in equation (2.2) and noting that for the setup as shown
in Fig. 2.1 returns a g(2)(τ) = 1, we attempt to increase the coherence time of the
light from the laser diode.

2.2 Spectral Filtering

2.2.1 Coherence Time of Light

The coherence time of a light source can be determined from the spectral bandwidth
itself, which is again given by the Wiener-Khintchine Theorem [2, 3]. For a light
with a Lorentzian lineshape:

S(ω) =
1
π

∆ω/2
(ω − ω0)2 + (∆ω/2)2 , (2.3)

the Fourier transform returns us an exponential distribution with the form:

F{S(ω)} = e−i2πτω0−∆ωπ|τ| = g(1)(τ), (2.4)

where the FWHM, ∆ω is the linewidth of a Lorentzian profile, and the equality
to g(1)(τ) given by Wiener-Khintchine Theorem. By comparing with the Siegert
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relation in equation (1.10), we obtain

g(2)(τ) = 1 + e
−2|τ|

τc , (2.5)

where the coherence time τc for a Lorentzian spectral profile is

τc =
1

π∆ω
. (2.6)

For a Gaussian lineshape, the coherence time τc is given as [10]:

τc =

√
8πln2
∆ω

(2.7)

From the Gaussian and Lorentzian lineshapes, the coherence time is inversely
proportional to the spectral bandwidth of the light

τc ∝
1

∆ω
(2.8)

Thus, to increase the coherence time of the light from the laser diode, we do spectral
filtering to reduce the linewidth.

2.2.2 Optical Bandpass Filter

Optical bandpass filters work by transmitting only selected wavelengths of light,
while absorbing other wavelengths using multiple layers of substrates of varying
thickness. Passing broadband light through an optical bandpass filter effectively
reduces the linewidth of the light, depending on the FWHM of the filter.

Using a optical bandpass filter (model NT43-125 from EdmundOptics) with
a manufacturer stated centre wavelength of 546 nm and a FWHM of 10 nm, we
measure the spectrum after passing laser diode light through it.
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Fig. 2.3 Spectrum measured by reflective grating spectrometer (1.5nm resolution) after a
bandpass filter. Laser diode at an input current of 25 mA. Bandpass tilted at an angle of
about 25◦ from the incident light.

We fit the spectrum with a single Gaussian fit like in equation (1.15), and obtained
a fitted FWHM of 8.2 ± 0.2 nm. At 25 mA, the FWHM without an optical bandpass
filter has a fitted value of 25.9 ± 0.4 nm as seen in section 1.2.2.

A spectral FWHM of 8.2 nm corresponds to a subsequent coherence time τc

of 0.45 ps, which is still three to four orders of magnitude lower than the timing
resolution of the APDs (1.2 ns). Thus, we require other methods to reduce the
linewidth.

Note that while the optical bandpass filter is insufficient in reducing linewidth,
it will be used to suppress optical crosstalk due to breakdown flash of the APDs,
which has wavelengths in the range of 850 nm [17].

2.2.3 Solid Etalons

A solid etalon is a piece of high refractive index material that acts as a frequency
comb, allowing only certain frequencies of light to transmit through the etalon,
which has highly reflective coatings on the inner walls. The thickness of the etalon L
determines the number of interference modes m of vacuum wavelength λ0 that can
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be present inside the etalon medium with refractive index n in the relation [18]:

m =
2nL
λ0

. (2.9)

The transmission peaks of the etalon are separated in frequency by the free
spectral range (FSR):

FSR =
c

2nL
(2.10)

where c is the speed of light in vacuum. A simple illustration below identifies the
free spectral range.

FSR

...

Fig. 2.4 Transmission through a solid etalon. Peak to peak separations are the free spectral
range (FSR), while λ refers to the wavelength of the transmitted light, which are integer
multiples of half-wavelengths.

With the solid etalon, there would only be light transmitting through when the
emission spectrum of the laser diode coincides with the transmission peak of the
etalon. The etalon effectively acts as a spectral filter to select longitudinal modes of
the laser diode when we vary the transmission frequency, which we shall term as
frequency tuning.

Frequency tuning of etalons can be done by tilting the etalons as well as tempera-
ture tuning [18]. In order to avoid losses [19] and frequency-walkoff [20] from tilting
of the etalon, we decided on frequency tuning with temperature.
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Sellmeier Coefficients

In order vary the transmission peaks of the etalon, we refer back to equation (2.10).
Both refractive index n and thickness of the etalon L are both temperature dependent.

In addition to temperature dependence, n varies with wavelength λ as well,
which is given by the wavelength-dependent Sellmeier equation [21]:

n2(λ) = 1 + ∑
i

Biλ
2

λ2 − Ci
(2.11)

where Bi and Ci are the experimentally derived Sellmeier coefficients, and λ is the
wavelength of light in the medium. By taking the derivative of equation (2.11) with
respect to temperature, we can arrive at the wavelength-temperature-dependent
Sellmeier equation:

dn(λ, T)
dT

=
n2(λ, T)− 1
2 · n(λ, T)

(
D0 · ∆T + D1 · ∆T2 + D2 · ∆T3 +

E0 · ∆T + E1 · ∆T2

λ2 − λ2
TK

)
,

(2.12)

where D0, D1, D2, E0, E1 and λTK are again experimentally derived coefficients.
Along with the thermal expansion coefficient of the substrate, we can obtain the
dependence of free spectral range (FSR) on temperature, which can then be used to
calculate the tuning rate, depending on the material used. For specific calculations
for the type of etalon medium used, refer to Appendix B.
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Results and Discussion

With a choice of a 1 mm thick etalon made of Suprasil 311, a type of fused silica glass
with low impurities, the tuning rate is calculated to be about -4 GHz/K. We insert
the etalon into the setup as such:

From Laser
Diode

Controller

APD

APD
Timestamp

Mirror

CL

CL

CL

CL

LD CL

Delay

PBS
λ/2

Etalon

Temperature 
Controller

LP

Mirror

SMF

MMF

PC/PC BPF

Fig. 2.5 Spectral filtering with 1 mm thick solid etalon for g(2)(τ) measurements. Etalon is
placed such that the back-reflection off its surface coincides with the downstream laser
diode light, which maximises interference inside the etalon and therefore higher
transmission ratios. Refer to Appendix A for a photo of the setup.

With the experimental setup in Fig. 2.5, the etalons were heated at a constant
voltage through the use of 2 through-hole resistors rated 30 W arranged in parallel.
A thermistor was also placed close to the etalon itself and held in place with epoxy
glue. A picture of the etalon holder with a 1mm etalon in place is shown below.

Fig. 2.6 Etalon holder with thermistor (1) and two 30 W through-hole resistors (2). The 1 mm
etalon (3) is held in place with an aluminium ring (4), which reduces direct air contact with
the etalon, which can result in temperature fluctuations.
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In order to determine the thermal response of the etalon holder, we measure the
temperature change as registered by the thermistor with time. The resulting plot is
as such:
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Equation of fit: Tetalon(t) = A + B * e t/tc

A: 114.8 ± 0.2
B: -84.7 ± 0.1
tc: 219 ± 1

Fig. 2.7 Heating curve of etalon at constant 10 V. Time constant tc was about 219 s. Black
points are experimental data while the red curve is the fitted curve.

With a heating time constant of (219 ± 1) s, the etalon holder requires just about
10 s for a temperature increase of 13% between the starting and final temperatures.
From the same figure, we can also see that there is a slight delay of about 5 s between
the start of the heating process (t =0) and the time where we see an increase in
the temperature. This could give a rough idea of the thermal lag of the etalon
holder itself. However, this could also be contributed by the delay in data collection
process (writing and reading of data).
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Recalling that the tuning rate is about -4 GHz/K, we heat the etalon holder
containing a 1 mm thick etalon at a constant 10 V. By varying the temperature of
the etalon, we scan through the spectrum of the light source at the particular input
current. An example of heating of etalons to scan through the spectrum can be
shown in Fig. 2.8. For the 1 mm etalon, the free spectral range (FSR) according to
equation (2.10) to be about 100 GHz.
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Fig. 2.8 Scanning of spectrum at 35 mA (above threshold) with etalon heating at a constant
10 V. Crosses (black) indicate experimental data collected that are joined by straight
lines (red). Temperature range of 30◦ C to 115◦ C, which covers more than 3 FSR (100GHz) of
the 1mm etalon. Note that the linewidth of the light at 35 mA is tens of GHz wide, or pm
wide, which is better than the resolution limit of a reflective grating spectrometer.

By setting the input current at 35 mA, which is above the threshold of about
31 mA, we demonstrate the ability of etalon tuning as a way to observe the spectrum
to a precision better than the USB type spectrometer used previously.

By scanning the spectrum for current values slightly below the threshold cur-
rent of about 31mA, we record the g(2)(τ) after setting the temperature that cor-
responds to one of the spectrum peaks (ie. obtain back the peak counts) just
like in Fig. 2.8. Setting of temperatures was done with the use of a propor-
tional–integral–derivative (PID) controller, which adjusts the output voltage to the
heating resistors based on the temperature values detected at the thermistor.
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32 Temporal Correlation of Light

The temporal second order correlation function g(2)(τ) plot is fitted to the equa-
tion:

N(τ) = A + B · e−
2|τ|
τc , (2.13)

where τ is the timing separation between photoevents and τc the coherence time.
The normalised factor B

A is the correlation factor. Should there be no correlation, B
A

would be close to 0, while a perfect correlation returns a ratio of 1. g(2)(τ = 0) is
obtained by normalising equation (2.13) by A, or the ratio of 1 + B

A .

The process of adjusting the set temperature and looking at the g(2)(τ) plot is
done concurrently. Once a set temperature with the highest g(2)(τ = 0) is obtained,
we adjust the laser diode input current. The resulting g(2)(τ = 0) against current
values in the range of 30.3 mA to 30.6 mA is as such:

30.3 30.4 30.5 30.6
Input Current(mA)

1.2

1.3

1.4

1.5

1.6

g(2
) (

=
0)

Fig. 2.9 g(2)(τ = 0) values with varying current after temperature tuning of the etalons.
Error bars are shown in black. For varying input currents of 30.3 mA to 30.6 mA in
increments of 0.1 mA with etalon at Tetalon = 42.450◦C, the highest g(2)(τ = 0) value is when
input current is 30.4 mA.
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The g(2)(τ) plot for the laser diode input current of 30.4 mA (corresponding to
the maximum g(2)(τ = 0)) is shown as such:
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Equation of fit: N( ) = A + B*exp(-2| -delay|/ c)
A: 10017 ± 8
B: 6300 ± 100

c: 14.9 ± 0.3ns
Delay: 68.56 ± 0.09ns
Reduced- 2: 1.38

Fig. 2.10 Temporal correlation with laser diode input of 30.4mA, with a set temperature of
42.450◦C. Fitted values using equation 1.9 returns a coherence time of 14.9 ns with peak
g(2)(τ) of 1.63. Error bars are again assumed to be Poissonian.

From Fig. 2.10, the fitted curve based on equation (2.13) returns us a normalised
g(2)(τ = 0) of 1.63 ± 0.02, with a coherence time of 14.9 ± 0.3 ns.The delay given
by the fit was at 68.56 ± 0.09 ns, which is close to where we expect the bunching
signal to appear, given the 13 m coaxial cable used for the electronic delay. Electronic
signals in coaxial cables travel at two-thirds the speed of light in vacuum, thus a
13 m coaxial corresponds to roughly 65 ns of delay. The additional 3 ns could be
due to the extra time delay contributions from the BNC connectors, or from slightly
different optical path lengths (in the order of cm).

The g(2)(τ = 0) of the laser diode running at 30.4 mA does not peak at a value
of 2 like in Fig. 1.4 for bunched light, which could be due to the presence of more
than one spatial mode and/or polarisation mode, as seen in equation (2.1). Noting
down the set temperature of the 1 mm etalon Tetalon of 42.450◦C as well as the input
current of 30.4 mA, we proceed with spatial second order correlation measurements.
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Chapter 3

Spatial Correlation of Light

By observing the correlation of intensities from the same light source at different
points in the space transverse to propagation of light, we can retrieve spatial infor-
mation of the light source. For a spatially incoherent, uniform intensity, circular,
quasi-monochromatic light source, this relation is once again justified by the van-
Cittert Zernike theorem with the Siegert relation as:

g(2)(b,τ = 0) = 1 +
∣∣∣∣2J1(πθUDb/λ0)

πθUDb/λ0

∣∣∣∣2 , (3.1)

where J1 is the first order Bessel function of the first kind, θUD the angular diameter
of the source, b = |r1 − r2| the baseline and λ0 the wavelength of light involved. In
the previous chapter, we achieved a bunching peak value of g(2)(b = 0,τ = 0) of
1.63. With reference to Fig. 1.5, as we increase the distance between each detector
arm, we expect to see the correlation of intensities decay to a minimum. As such, we
have to modify the setup to allow for the detectors to be translated in the direction
transverse to propogation of light.

For the equation above to hold, we need a circular light source that is uniformly
illuminated. Thus, we choose to use a pinhole aperture with collimated light from
the laser diode incident on it. For a check of collimation, we refer to the Rayleigh
length zR

zR =
πω2

0
λ

, (3.2)
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36 Spatial Correlation of Light

within which a Gaussian beam has a relatively constant beam size. ω0 refers to the
beam waist (or the size of the light beam at its narrowest point) and λ referring to
the wavelength of light involved. For our setup, which will be discussed further
later in this section, we obtain a Rayleigh range of about 143 m with a beam size of
about 5 mm.

The transverse coherence length, lc, of a circular light source is given by as

lc =
λz
2R

, (3.3)

where λ refers to the wavelength of light involved, z the distance from the light
source and R the radius of the circular light source. As the distance between detectors
increase beyond the transverse coherence length, the spatial coherence decreases
to 0. In order to extract spatial information from the light source, the aperture size
of the detector has to be smaller than the transverse coherence length, which sets a
limit on the aperture size of the detector.

Lastly, to prove the concept of intensity interferometry using spatial second order
correlation, we would require the aperture size of the detectors to be sufficiently
small, such that it will not be able to resolve the source itself. With these additional
constraints to our setup, we proceed to the experimental setup.
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3.1 Setup for Spatial Correlation Measurements

Based on the options available in the lab, we settled on a 150 µm pinhole (Thorlabs
P150S), with a quoted 150 ± 6 µm diameter. With this choice of aperture, we setup
the experiment as such:

From Laser
Diode

Controller

Mirror

CL

CL

LD CL

Mirror

MMF

LP Aperture

Mirror

NPBS
SMF

CL

CL

Etalon

Temperature 
Controller

Timestamp

APD

Delay

Iris

BPF

Fig. 3.1 Experimental setup for spatial second order correlation measurements. Aperture
used is a 150 µm pinhole; iris used is 1 mm wide; distance from source to detection z: 0.50 m.
Refer to Appendix A for a photo of the setup.

With reference to Fig. 3.1, we chose to use only the multimode fibre (MMF) before
the aperture as we want to avoid the spatial coherence present from the output of a
single mode fibre (SMF). Instead, light after passing through the MMF is collimated
with an aspheric lens (Thorlabs C220B) with an effective focal length of 11 mm, and
incident on a linear polariser (LP), before it is incident on the 150 µm pinhole. The
pinhole then acts as a spatial mode selector, similar to how the slit after the light
source in a Young’s double slit experiment creates a spatially incoherent light source.
Light after the pinhole is divergent, with an angle of divergence of about 1◦. It is
then incident on a non-polarising beam splitter (NPBS), which splits light into two
directions, with each having a similar setup as the other (indicated by the red boxes).
At a distance of about 50 cm away from the 150 µm pinhole, light is then incident on
a 1 mm wide iris.
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38 Spatial Correlation of Light

For a 150 µm light source at a distance of 50 cm away, the transverse coherence
length is given by

lc =
λz
2R

=
(515nm)(50 cm)

150µm

≈ 1.7mm

A 1 mm iris which limits the detector aperture size to 1 mm is lesser than the trans-
verse coherence length. In addition, the 150 µm light source at a distance of 50 cm
away spans an angular separation of approximately 3 · 10−4 radians, which can-
not be resolved by a 1 mm aperture according to Rayleigh’s Criterion for visible
wavelengths.

The 1 mm iris on each arm (reflected/transmitted), mounted on a X-Y translation
stage, selects a spatial part of the light and is coupled into a single mode fibre (SMF)
with an aspheric lens (Thorlabs C230B). Light from the other end of the fibre is
normally incident on a 1 mm etalon, just like we did for the temporal second order
correlation measurements, before passing through a bandpass filter (centre wave-
length: 546 nm ± 5 nm) before being collected into a MMF connected to an avalanche
photodiode (APD, passively quenched).

We first do a preliminary check if there is any bunching corresponding to b = 0
separation, or in other words, the temporal second order correlation. On the reflected
arm of the setup in Fig. 3.1, we replace the single detector with another NPBS and
two APDs for a temporal second order correlation measurement. We also remove
the 150 µm pinhole and 1 mm iris for a similar setup for our temporal second order
correlation measurements.
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3.2 Results and Discussion

The results of the temporal second order correlation without pinhole and iris was as
such:
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Equation of fit: N( ) = A + B1*exp(-2(| -delay1|)/ c1)
    + B2*exp(-2(| -delay2|)/ c2) + B3*exp(-2(| -delay3|)/ c3)
A: 9897 ± 9
B1: 1160 ± 60
B2: 6100 ± 100
B3: 1090 ± 60

c1: 38 ± 4
c2: 11.4 ± 0.4
c3: 45 ± 4

delay1: 39.0 ± 0.8
delay2: 68.30 ± 0.08
delay3: 97.4 ± 0.9
Reduced- 2: 1.38

Fig. 3.2 Temporal second order correlation measurement as a preliminary check with no
pinhole and iris. Tetalon = 42.200◦C, laser input current: 30.4 mA

While we were still able to obtain a g(2)(b = 0,τ = 0) of about 1.6, there were two
additional distinct peaks with a smaller amplitude, symmetric about the main peak.
Repeated measurements gave a similar result. Instead of fitting the plot with the
same equation of fit as in (1.9), we introduce two additional terms in an attempt to
get more information for the two extra peaks:

N(τ) = A + B1 · e
−2|τ−delay1|

τc1 + B2 · e
−2|τ−delay2|

τc2 + B3 · e
−2|τ−delay3|

τc3 , (3.4)

where the two additional terms are also modelled the same as the central peak.
Based on the equation of fit in (3.4), we obtain a g(2)(τ = 0) of 1.61 ± 0.01 for the
central bunching peak, with a coherence time of 11.4 ± 0.4 ns. For the side bunching
peaks, the corresponding g(2)(τ = 0) are 1.12 ± 0.01 and 1.11 ± 0.01 for the left and
right peaks respectively, with coherence time of about 40 ns for both. They are also
present at about 29 ns before and after the main bunching signature at the τ = 68 ns
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mark. A 29 ns delay corresponds to a free space optical path difference of 8.7 m,
which is longer than the path of the setup. The differences in this setup from the
setup for temporal second order correlation measurements include the absence of
a half-wave plate, position of linear polariser and the use of non-polarising beam
splitters. We suspect that the additional bunching peak is a result of back reflection
off an optical element such as the beam splitter, resulting in interference with the
light propagating down the setup, causing delayed coincidence events.

We also note that for this measurement, a set temperature of 42.200 ◦C was used
to tune the etalon to the peak count rates, corresponding to the emission peak of the
light source, instead of a previous value of 42.450 ◦C. This could indicate that the
emission peaks of the laser diode shift over time (measurements was done about 1-2
weeks apart), which would mean that temperature tuning of etalons before the start
of measurements has to be done.

The 150 µm pinhole was then inserted in the path as indicated in Fig. 3.1. How-
ever, due to divergence of light after passing through the pinhole, the coupling into
the collimating lens after the NPBS is inefficient. For the experimental setup in Fig.
3.1, we were only able to achieve a transmission ratio of about 0.1% when comparing
the light intensity before the 1 mm iris and after the single mode fibre (SMF) with
a powermeter. After passing through the etalon and optical bandpass filter, the
count rates at each detector was essentially the dark counts of the detector (≈1300
counts/s and ≈4200 counts/s for the two passively-quenched Silicon-APDs).

3.2.1 Challenges

Thermal Crosstalk between Etalons

One challenge with having one or more etalons in each arm of the setup in Fig. 3.1
is thermal crosstalk between them. As the one etalon heats up, thermal radiation
causes the other etalon to heat up as well, which causes the proportional-integral-
derivative (PID) controller to reduce the output voltage to the heating resistors,
causing the etalon to cool. This reduces the thermal radiation absorbed by the
first etalon, causing the PID controller to increase the output voltage to the heating
resistors. This interaction causes fluctuations in transmission of light through the
etalon, or rather, oscillations in the counts detected. This could result in artificial
coincidence counts between the two detectors that correspond to thermal crosstalk.
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Placing the etalons at opposite ends of the setup, or the use of thermal insulation,
are possible measures that can reduce these effects.

In section 2.2.3, we tune the temperature of the etalon to locate the spectrum
peaks of the laser diode light. The issue would then be locating the same peak for
each etalon before taking correlation measurements. One possible solution would
to have the light pass through a common temperature-controlled etalon before the
pinhole, and using another temperature-controlled etalon with a lower thickness,
each for the transmitted and reflected arm. The first etalon is used to select a peak of
the spectrum, while the thinner etalon on each arm (with a larger free spectral range)
is used to "filter" the correct peak.

Locating zero baseline

As the 1 mm iris selects a spatial section of the light’s output, it can be a challenge
to determine which section of the light’s spatial profile each iris is selecting, which
affects measurements of g(2)(b,τ = 0). This would lead to wrong angular diameter
measurements, measurements lesser than the actual angular diameter for a circular
light source. Using the X-Y translation stage that the iris is attached to, we are able to
vary the direction along one or two axis, but unable to ensure that both the irises are
looking at the same spatial profile (for b = 0) or different spatial profiles (for b > 0)
after passing through the beam splitter. While we can collect measurements outside
of the first minima of g(2)(b) and do a fit to translate our data points to coincide with
a maximum value of g(2)(b) when b = 0, this only gives us the correct offset in one
direction. The same measurements in the orthogonal direction must also be carried
out to obtain the central spot of the light’s spatial profile.

Spatial Profile after Fibres

In the setup for spatial correlation measurements, we chose to use a multimode
fibre (MMF) due to the ease of collecting light from the laser diode and having a
collimated beam aimed at the pinhole for approximately uniform intensity distri-
bution [22], which is one of the requirements for van-Cittert Zernike Theorem [4, 5].
However, the spatial coherence properties at the output of a MMF is affected by the
modal dispersion, fibre length and bandwidth of the light source [23]. Studies on
how fibre lengths impacts coherence properties, based on how the intensity patterns
change with propagation along the fibre [24, 25], brings about additional ambiguity
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in the spatial coherence properties at the output end of the MMF. By van-Cittert
Zernike Theorem, we require a spatially incoherent source. A spatially coherent
output after the MMF would cause the theorem to fail.

In order to remove these extra parameters, we could choose to do without fibres,
but whether the light from the laser diode is spatially incoherent to begin with is
another question to be answered. There is, however, some means of introducing
spatial incoherence through the use of large core diameter step-index polymer optical
fibres [26] that can be explored.



Chapter 4

Conclusion

In this thesis, we described the use of light that has bunching properties for both
temporal and spatial intensity interferometry. Temporal intensity interferometry,
made possible with advancements in detector technologies, allows for spectral
analysis through a Fourier transform according to Wiener-Khintchine Theorem [2, 3].
Spatial intensity interferometry, pioneered by Robert Hanbury Brown and Richard
Quintin Twiss in 1954, allows for spatial intensity analysis through van-Cittert
Zernike Theorem [4, 5].

Through determining of the laser threshold via the power-current curve and
spectral full-width half maximum, we ran a semiconductor laser diode below the
threshold, and showed that with spectral filtering, the coherence time increases
till the bunching signature can be resolved by a 1.2 ns timing resolution avalanche
photodiode.

Proceeding with spatial intensity interferometry, we created a setup that could
potentially measure g(2)(b), but encountered setbacks that halted progress. We list a
few possible challenges that would be encountered in the future and some possible
ideas.

As a next step, we could increase the coupling efficiency of divergent light
into the single mode fibre with a lens with a wider clear aperture and incorporate
translation stages in the z-direction for increased coupling into the fibre. We should
also verify that the light incident on the 150 µm pinhole is a spatially incoherent
source through possible methods such as a Mach-Zehnder interferometer [27], or
employ techniques to create spatial incoherence, such as step-index polymer optical
fibres [26], optical coherence tomography [28] or microsphere suspension [14]. We
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could also experiment with other aperture types, such as slit, double slits and shaped
apertures such as square apertures.
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Appendix A

Experimental Plots and Photos

Spectrum Plots with Gaussian Fits
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(a) Spectrum with fits for input current 5 mA
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(b) Spectrum with fits for input current 15 mA
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(c) Spectrum with fits for input current 35 mA
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(d) Spectrum with fits for input current 45 mA

Fig. A.1 Single and double Gaussian fits for spectrum data at varying input currents.
Measurements taken by OceanOptics spectrometer.
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Photos of Setup

Setup for temporal second order correlation measurements:

Fig. A.2 Green lines indicate path of light. The laser diode (1) is coupled into a multimode
fibre that is mated to a single mode fibre (2). Light is then incident on a half-wave plate (3)
and a 1 mm thick etalon. Transmitted light then passes through a linear polariser (5) and a
bandpass filter (6) before it is incident on a polarising beamsplitter (7), with light from each
arm coupled into a multimode fibre that is connected to passively quenched avalanche
photodiodes (8). They are electronically connected to a timestamp unit (not shown). Orange
fibres are multimode fibres while yellow fibres are single mode fibres.



49

Setup for spatial second order correlation measurements:

Fig. A.3 Green lines indicate path of light. After light from the laser diode has passed
through a multimode fibre and is collimated with an aspheric lens, it is incident on a film
linear polariser (1) before it hits the 150 µm pinhole (2). It is then incident on a
non-polarising beamsplitter (3). We first setup the reflected arm, which consists of a variable
iris (minimum aperture size of 1 mm) on a X-Y translation stage, with an aspheric lens held
by a tip-tilt stage in a cage system (4). After passing through the single mode fibre, it is then
incident on the 1 mm etalon (5) before passing through a optical bandpass filter (6). Another
non-polarising beam splitter directs light into two separate aspherics and connected to two
detectors (7) with multimode fibres. They are then electronically connected to a timestamp
unit (not shown) via NIM cables (white cables).
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Miscellaneous

(a) Timestamp unit used for coincidence measurements.
Channels 1 and 2 were used, with an electronic delay
introduced to channel 2. The dead time of the
timestamp unit is 2 ns.

(b) Optical bandpass filter used, with centre
wavelength of 546 nm and about 8 nm FWHM.



Appendix B

Tuning Rate of Etalon

Coefficients Values

B1 4.73115591·10−1

B2 6.31038719·10−1

B3 9.06404498·10−1

C1 1.29957170·10−2

C2 4.12809220·10−3

C3 9.87685322·101

Table B.1 Empirical Sellmeier coefficients for wavelength-dependent Sellmeier
equation.

Coefficients Values

D0 2.18 ·10−5

D1 2.45·10−8

D2 -2.72·10−11

E0 2.31·10−7

E1 2.21·10−10

λTK 235nm
Table B.2 Empirical Sellmeier coefficients for wavelength-temperature-dependent

Sellmeier equation.

From the definition of free spectral range defined in equation (2.10), we can
differentiate it with respect to temperature T:

∂FSR
∂T

= − c
2n(λ, T)L

(
1

n(λ, T)
∂n(λ, T)

∂T
+

1
L

∂L
∂T

)
, (B.1)
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52 Tuning Rate of Etalon

where we can obtain the ∂n(λ,T)
∂T term from the Sellmeier coefficients in Table

B.2. Substituting the values into the wavelength-temperature-dependent Sellmeier
equation:

∂n(λ, T)
∂T

=
n2(λ, T)− 1
2 · n(λ, T)

(
D0 · ∆T + D1 · ∆T2 + D2 · ∆T3 +

E0 · ∆T + E1 · ∆T2

λ2 − λ2
TK

)
≈ 8.92 · 10−6K−1

We also obtain the refractive index of the etalon substrate (Suprasil 311) at 515 nm
using the equation in (2.11) and substituting values in Table (B.1) to obtain a value
of about 1.4615.

Along with a thermal expansion coefficient of 5.1 · 10−7K−1, we substitute these
values into equation (B.1), we obtain for a 1 mm thick etalon made of Suprasil 311:

∂FSR
∂T

= − c
2(1.4615)(0.001)

(
1

1.4615
(8.92 · 10−6) + 5.1 · 10−7

)
= −0.678 MHz/K

The mode number m that corresponds to 515 nm in the 1 mm etalon is about
5676, hence at the mode corresponding to 515 nm, the tuning rate is calculated to be
-3.85 GHz/K. Note that this value is just an estimate of the actual tuning rate of the
etalon.
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