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Abstract

Present-day underwater earthquake sensors like ocean bottom seismometers require a high

cost to build and deploy. Installing existing submarine fibers into an interferometer is,

on the other hand, a cost-effective alternative. This thesis therefore aims to describe the

development of a fiber-based Michelson interferometer that is able to sense mechanical

perturbations in the environment. This is done by measuring phase changes induced in the

fibers as a result of the perturbations. In addition, by interfering two light fields of different

frequencies, one can convert the Michelson interferomter into a heterodyne phasemeter,

which is able to measure phase changes without any direction ambiguity.
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1 Introduction

1.1 Earthquakes

Natural disasters cause an average of 60,000 deaths and more than US$50 billion in economic

loss every year throughout the world [1, 2]. Between 2000 and 2019, 4 out of the 5 deadliest

natural disasters that happened were due to earthquakes [3].

Table 1.1: Death toll and the economic cost of the five deadliest natural disasters between
2000 and 2019 [3–7].

Natural Disaster Location Year Deaths Cost (US$)
Sumatra–Andaman earthquake Indian Ocean 2004 226,408 14 billion

2010 Haiti earthquake Haiti 2010 222,570 8 billion
Cyclone Nargis Myanmar 2008 138,366 12 billion

Great Sichuan earthquake China 2008 87,476 120 billion
2005 Kashmir earthquake Pakistan 2005 73,338 5.2 billion

Earthquakes are associated with sudden shaking of the Earth caused by tectonic shifts,

volcanic eruptions, or man-made explosions, leading to release of strain energy stored in

rocks in the form of seismic waves [8, 9]. There are several types of seismic waves, often

classified as body waves and surface waves [10]. Body waves are named body waves since

they travel through the interior of Earth, and the two types are Primary waves (P-waves)

and Secondary waves (S-waves) [11]. On the other hand, Rayleigh waves, Love waves and

Stoneley waves are called surface waves as they travel along the Earth’s surface [11].

Seismic waves

Body waves

P-waves S-waves

Surface waves

Rayleigh waves Love waves Stoneley waves

Figure 1.1: Classification of seismic waves.

The strength of an earthquake is classified using various magnitude scales such as the

Richter scale, denoted by ML, and the moment magnitude scale, denoted by MW [12]. The
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2 CHAPTER 1. INTRODUCTION

latter is usually preferred as it is the only physically well defined, non-saturating magnitude

scale for earthquakes [13]. Using the 4 earthquakes in Table 1.1 as examples, the moment

magnitudes for the Sumatra–Andaman earthquake, 2010 Haiti earthquake, Great Sichuan

earthquake and 2005 Kashmir earthquake had moment magnitudes of MW 9.0, MW 7.0,

MW 7.9 and MW 7.6 respectively [4, 14–16].

The Sumatra–Andaman earthquake started off as an earthquake, but most of the

destruction to life and property was caused by the resulting tsunami - which means harbour

wave in Japanese - that reached 30m in height [4, 17]. The damage unfolded from the

tsunami was more significant as there were no proper alert systems at the time [18]. When

the seismic event was detected by the United States (US), warning could not be delivered to

Indonesian officials as they were not contactable, despite numerous attempts [19]. Thus, to

minimise the extent of damage to life and property by earthquakes and tsunamis, earthquake

detection is important everywhere in the world - in both land and water. After all, no part

of the world is immune to earthquakes, although most are concentrated on the continental

plate boundaries, called the Ring of Fire [20]. Indonesia, Japan and US are three of the

many countries located along the Ring of Fire.

1.2 Existing Efforts in Underwater Earthquake Detection

Even though 70% of the surface of the Earth is water, almost all seismic stations are on

land (e.g. GB.SWN1, GB.HMNX, MN.WDD), and these stations use seismometers [21–23].

A seismometer is based on inertial-pendulum systems. It consists of a ballast mass

attached to a spring, and the other end of the spring is attached to a frame that is fixed to

the ground. During an earthquake, the frame moves. On the other hand, the mass does

not move due to its large inertia. The motion of the frame with respect to the mass is

transformed into an electrical voltage which is recorded. The recorded voltage is proportional

to the motion of the mass relative to the Earth from which the absolute motion of the

ground can be derived. When detecting earthquakes, both types of body waves - P-waves

and S-waves - are detected first since they travel faster than surface waves [24]. P-waves

will arrive before S-waves, although the latter causes higher amplitudes of motion [24].

Frequencies of seismic waves lie within the order of tens of Hertz, and the usual frequency

detection range for earthquakes is targeted between 0.1 and 20Hz [25, 26]. The reason for

this is that most man-made structures have natural vibration frequencies in this range [25].
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Since most seismic stations are on land, underwater earthquakes of MW < 4 therefore

remain largely undetected because they are too weak to be measured with land-based

seismic stations [26]. To circumvent this, underwater seismic sensors such as ocean bottom

seismometers (OBSs), have been deployed at earthquake-prone areas [27, 28]. However, the

issue with OBS is that it is costly - building one costs about US$100, 000, five times the cost

of its land-based counterpart and deploying it would only drive the price higher [26, 29, 30].

This means that deploying a network of OBSs big enough to cover Earth’s waters would be

financially impractical to install and maintain.

Alternatively, existing submarine telecommunication fibers could be used as earthquake

sensors by building them into an interferometric system. In the oceans, the total length

of installed fibers is over 1 million kilometers - if put in a straight line could go around

the circumference of the Earth 25 times [31]. Global coverage could be achieved with

minimal cost as the need for deployments to the middle of the ocean would be reduced,

considering that the system would be accessible from land. With this technique, earthquake

detection can be achieved by measuring phase changes of the light propagating in the

fiber, due to changes in refractive index when perturbed [26]. Another possible way of

achieving earthquake detection with a fiber-based interferometer is by measuring changes in

polarisation states in the fiber [32].

Another method of using existing fibers to detect earthquakes is by the distributed

acoustic sensing (DAS) technique [33, 34]. The DAS method employs a laser interrogator

unit located at one end of the fiber whose purpose is to illuminate the fiber with short

pulses and study the Rayleigh backscatter of light. Backscattered photons will return to the

interrogator unit at a time proportional to the fiber distance traveled, and the retrieved

phase shift is proportional to the change in strain due to the seismic waves [35]. However, the

usable range in DAS is less than 100 km [26]. This means that using DAS is not as favorable

when compared to using an interferometric system. Detecting earthquakes with submarine

fibers of lengths up to 535 km had been achieved with a fiber-based interferometer, more

than 5 times the working range of a DAS system [26].

For these considerations, this thesis thus proposes developing a fiber-based interferometric

system that can detect mechanical perturbations in the environment. The working principles

and advantages of an interferometric system can be better understood in the following

chapter.
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1.3 Thesis Outline

The purpose of this thesis is to describe the development of a fiber-based interferometric

system, called the heterodyne phasemeter, that is able to detect mechanical perturbations

in the environment. The difference between a phasemeter and an interferometer is the

former’s additional ability to unwrap phase changes from the output signal without direction

ambiguity [36]. The heterodyne phasemeter is able to resolve micrometer-scale length

changes in optical path due to mechanical perturbations including, but not limited to, those

in the typical earthquake range of 0.1 to 20Hz. In this thesis, mechanical perturbations are

simulated in several ways - by moving a mirror in the setup (i.e. by turning the micrometer

screw), human motions (e.g. walking, touching the table) and other typical activities in the

lab (e.g. opening the door, opening drawers).

Chapter 2 highlights the modifications to the simple Michelson interferometer, as in

Figure 2.1, that allow the setup to detect perturbations in the environment with fibers.

Additionally, the limitations of the Michelson interferometer, along with the corresponding

adopted solutions will be discussed. The chapter will then end off with 2 applications, the

first being the detection of perturbations in the lab and the second being the detection of

perturbations in the building, S15 of National University of Singapore (NUS).

Chapter 3 then features the heterodyning process of the setup, resulting in the heterodyne

phasemeter. Likewise, its working principles and advantages will be explained, before ending

off with a test run to detect perturbations in the lab.

The thesis will be concluded in Chapter 4 in which remarks and outlooks will be provided.



2 Building a Fiber-Based Michelson Interferometer

2.1 Michelson Interferometry

2.1.1 Micrometer Resolution of Interferometric Sensors

Interferometry allows for measurements with resolution in the order of a micron or even

smaller [37, 38]. This is possible due to optical interference, a phenomenon in which waves,

in our case light, interact and superimpose.

Figure 2.1: The Michelson interferometer. The apparatus consists of a 50:50 beamsplitter
(BS) and two mirrors M1 and M2. Interference fringes are observed at the output port as
the length of one of the arms (arm 2 in this case) is varied.

The basic principles of interference can be understood by reference to the Michelson

interferometer illustrated in Figure 2.1. The simplest version of the Michelson interferometer

consists of a 50:50 beamsplitter (BS) and two mirrors M1 and M2. Light is incident on

the input port of the BS, where it is divided and directed towards the mirrors. The light

reflected off M1 and M2 recombines at BS, producing an interference pattern at the output

port. The path length of one of the arms can be varied by translating one of the mirrors

(assume it is M2) in the direction parallel to the beam.

Let us assume that the input beam consists of parallel rays from a monochromatic source

(e.g. a laser) of wavelength λ and amplitude E0. The output field is obtained by summing

the two contributions from the waves reflected back from M1 and M2 with their phases

5
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determined by the path lengths [36]

Eout = 1
2E0e

2ikLx(1 + e2ik∆L) (2.1)

= 1
2E0e

2ikLx(1 + eiφd) (2.2)

where k = 2π/λ is the wavenumber of the laser, Lx is the length of arm 2, ∆L is the length

difference between the two arms (hence ∆L = Lx − Ly) and φd = 2k∆L is the differential

phase.

Constructive interference happens when

2k∆L = 2mπ, (2.3)

and destructive interference happens when

2k∆L = (2m+ 1)π, (2.4)

where m is an integer. Thus as Ly is scanned, bright and dark fringes appear at the output

port with a period equal to λ/2. The interferometer thus forms a very sensitive device to

measure differences in the optical path lengths of the two arms.

In the context of this thesis, the two arms of the interferometer are not air paths, but

rather fibers. While the length of the fibers are fixed, changes in optical path lengths in this

case is due to changes in the fibers’ refractive indices when it is perturbed [39].

2.1.2 Coherent Light Source for Michelson Interferometer

The discussion of the interference pattern in the previous section assumed that the phase

shift between the two interfering fields was determined only by the path difference, 2∆L,

between the arms. However, this is an idealised scenario that ignores the frequency stability

of the light. In realistic sources, the output contains a range ∆ω of angular frequencies

which leads to the possibility that bright fringes for one frequency occur at the same position

as the dark fringes for another [40]. Since this washes out the interference pattern, it is

apparent that the frequency spread of the source imposes practical limits on the maximum

path difference that will give observable fringes.

Coherence describes the statistical similarity of light at two points in space or time [41].
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The two types of coherence are generally distinguished as temporal coherence and spatial

coherence, but in this thesis we limit the discussion to temporal coherence as it is the only

relevant type here [42].

The temporal coherence of a laser beam is quantified by its coherence time τc, where

τc = 1
2π∆ω (2.5)

An analogous quantity called the coherence length Lc can be obtained from:

Lc = cτc (2.6)

The main idea is that for as long as 2∆L 6 Lc, the interference fringes would still be

visible, and hence perturbations would still be detectable. Ideally, the chosen light source

should have a large Lc, or in other words, the chosen light source should be temporally

coherent. An example of a coherent light source is a monochromatic laser with a small

linewidth. In our case, the light source used is a 1550nm laser with a prescribed linewidth of

50 kHz, translating to a coherence length of about 600m (after taking account the velocity

factor of light, 0.659, in a fiber). The choice of wavelength is unrelated to coherence - it is

the wavelength that minimises transmission loss in fibers [43].

Figure 2.2: Spectrum of SFL1550S Thorlabs external cavity laser with wavelength centered
at 1549.75nm. The spectrum was obtained with a wavemeter with a resolution limit of
3GHz. The true linewidth of the laser is thus unresolved.
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2.1.3 Analysing Output Light

To analyse the resulting interference, if any, the simple Michelson interferometer in Figure

2.1 requires a few necessary components - a detector, a signal analyser (e.g. an oscilloscope)

and a pair of collimating lenses. Also, since this thesis aims to develop a fiber-based

interferometric system, fibers should be incorporated into its ports, as reflected in Figure

2.3.

Figure 2.3: All ports of the Michelson interferometer are fibers. Recombined light in the
output port propagates towards a photodiode where it is detected, before being analysed in
oscilloscope. In arm 2 (or the sensing arm), light is collimated and one of the collimating
lens is mounted on a movable stage.

Initially, changes in optical paths can be realised by moving mirror M2. However, with

the use of fibers in the interferometer, moving M2 would not result in the same effect as the

length of the fiber, and hence the arm length, is fixed. There is a need to collimate the light

in arm 2, or what shall be referred to as the sensing arm from here on, and have one of the

collimating lens mounted on a movable stage. In our case, the movement of the stage can

be controlled with a micrometer screwgauge. This way, the path length of the sensing arm

can be similarly varied.

At the output port, the optical power, Pout, is given by the mod-square of Equation 2.2

such that

Pout = Pin
2 [1 + cos (φd)]. (2.7)
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From Equation 2.7, it can be seen that the output power goes between zero and the full

input laser power Pin, depending on the differential phase φd. Also, the cosine term implies

that when ∆L is varied, the output power is sinusoidal. Equation 2.7 as a function of φd

can be plotted to confirm this behaviour, which is shown as Figure 2.4.

Figure 2.4: Output power of interferometer, Pout, varies sinusoidally as ∆L, or φd, is varied.
Graph is obtained by plotting Equation 2.7 as a function of φd.

The oscilloscope however does not read out Pout directly. Instead, it measures variations

of voltage proportional to Pout over a period of time t. Thus, we should expect that the

output signal from the oscilloscope to be a plot of voltage against t.
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2.2 Experimental Setup

Figure 2.5: Michelson interferometer setup after addition of an isolator and Faraday mirrors
(FM).

Figure 2.5 shows the schematic of our Michelson interferometer. An isolator and two Faraday

mirrors (FM) are added into the setup.

An isolator is connected after the laser to prevent optical feedback, which happens when

light propagates backwards and into the laser. This would induce frequency noise and cause

the laser to operate in an unwanted lasing mode, i.e. multi mode instead of single mode

(as in Figure 2.2) [44]. Meanwhile, the mirrors are swapped with FMs to eliminate random

polarisation states induced in the fibers, which will otherwise degrade the sensitivity of

the setup [45]. This is achieved by the Faraday effect - after light reflects off the FM, its

polarisation state is shifted by π, i.e. the resulting polarisation state becomes orthogonal to

that of the incident light [46].

To test the setup, the knob of the micrometer screwgauge is turned, and the results are

shown in Figure 2.6.
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Figure 2.6: A sinusoid is obtained when the knob of micrometer screwgauge in the sensing
arm is turned, as predicted in the previous section.

2.3 Influence of Phase Noise From Laser

As mentioned briefly in Subsection 2.1.2, in reality, true monochromatic light does not exist.

Frequency fluctuations are often a significant source of noise in many precision interferometry

experiments [40], it is useful to investigate how frequency fluctuations couple to the optical

phase. We can do so by separating the wavenumber into an average component, k0, and

a time-fluctuating component, δk = 2πδf/c. The length difference is similarly divided

into constant, L0, and fluctuating δL components. In both cases, the time-fluctuating

component is assumed to be much smaller than the constant value. Combining these terms,

the differential phase is now

φd = 2(k0 + δk)(L0 + δL) (2.8)

= 2(k0L0 + k0δL+ δkL0). (2.9)

The first term is the constant term, or when the length difference is unchanged. The
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second term is the interest of this thesis - when the length difference between the two

arms is varied, the output power varies sinusoidally. As such, for this we consider that a

perturbation is detected. The third term refers to phase noise in the setup due to frequency

fluctuations of the laser being coupled to the length difference of the arms, L0. This suggests

that phase noise will increase when the L0 increases.

To investigate, a spectrum analyser is used, and the power spectra of the output signal

from the photodiode is collected for L0 = 0.2m, 6.2m and 15.2m.

Figure 2.7: Power spectra of output signal from photodiode with different values of L0 used.
As L0 increases from 0.2m to 15.2m, optical power of output signal increases. The peaks
near 4 kHz are identified to correspond to mechanical perturbations.

From Figure 2.7, it can be seen immediately that the power of the spectra increases with

increasing L0. The peak near 4 kHz correspond to the presence of mechanical perturbations

when the measurements were made. Mechanical perturbations were simulated by knocking

on the table, for example, and a larger increase in power below the 5 kHz range was observed.

Since we are interested in investigating the onset of phase noise, we chose 3 frequency values

(f = 5.81 kHz, 6.44 kHz and 7 kHz) beyond the range where the mechanical perturbations

correspond to (i.e. the flat regime), and plotted a graph of power against L0. When
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the logarithmic scale is used for both x-axis and y-axis, we found that there is a linear

relationship, in agreement with findings by Dandridge et al. [40].

Figure 2.8: As L0 increases, phase noise increases linearly. The values of L0 used were
L0 = 0.2m, 2.2m, 4.2m, 6.2m, 8.2m and 15.2m. The first data points on the left correspond
to baseline noise, present even when L0 is approximately zero.

This highlights the detrimental effect of the frequency instability of a light source. As

mentioned in Subsection 2.1.2, the onset of phase noise will wash away the interference fringes.

From Figure 2.8, we can see that the magnitude increased by about 20 dBm, corresponding

to a 100 times increase in phase noise, when L0 is increased by 10m (comparing the first

and last data points along the best fit line).

To tackle this issue, there are 2 possible solutions. The first would be to minimise

frequency fluctuations of the laser by using an external cavity like in [26]. However, this

would increase the cost of the setup considerably. Alternatively, we can minimise the L0 at

all times so that the phase noise term remains small.

However, while the proposed solution may seem simple, ensuring equal length of fibers in

the two arms gets challenging when dealing with longer fibers. It gets even more challenging

when the fibers are already set in an infrastructure (e.g. the walls of a building). If the fibers
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have been set in concrete for a long period of time, it is possible that the exact length of the

fibers become forgotten over time. In that case, measuring the length of the fibers using

conventional methods (e.g. measuring tape) is no longer possible. For these considerations,

it is imperative to think of an appropriate measuring technique for such circumstances, so

as to be able to minimise phase noise when working with any fiber.

2.3.0.1 Minimising Path Difference with Photon Coincidence Method

The photon coincidence method can be employed to measure the length of a physically

inaccessible fiber. The setup is given by Figure 2.9 below.

Figure 2.9: Photon coincidence setup to determine length of a physically inaccessible fiber.
The photon pair each travels through the signal (blue path) and idler (red path) fiber
respectively. Due to the length difference between the signal and idler fibers, there is a time
delay τ in the detection of photons in the longer arm.

The photon pair source continuously produces photon pairs within femtoseconds from

each other. Each time, the individual photons travels through the signal and idler fibers
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respectively. If the signal and idler fibers differ in length, the photon that travels in the

longer fiber reaches the timestamp unit later. In other words, a time delay, τ is induced.

The length of an unknown fiber can be determined by first plotting coincidence counts

against τ . Because the photons travelling in each fiber obeys the same photon statistics,

there will be a peak in the coincidence counts graph corresponding to τ .

Figure 2.10: A time delay is induced due to difference in length of signal and idler fibers. In
this example, the idler fiber is longer.

For our case, the unknown fiber is a building fiber that runs through S15 of NUS, and

terminates in the MDF room, behind S15. For ease of monitoring, our interferometer is

connected as the idler such that only a FM is required to be connected at the other terminal.

Additionally, we require 2 sets of measurements - first by appending a fiber of known length

in the idler (i.e. the dotted box in Figure 2.9) and then by connecting the building fiber.

This is more convenient as length of signal fiber, as well as other fibers in the setup, are

not easily known. With these measurements, the length of the building fiber can then be

determined through the following equation

∆τ = Lknown − Lbuilding
2c/n (2.10)

where ∆τ is the difference between the time delays corresponding to the peaks in the

respective graphs, Lknown is the length of the fiber which is known, Lbuilding is the length

of the building fiber, c is the speed of light and n is the refractive index of the fiber. The

factor 2 is included to account for the forward and backward travel path of light in the idler.

Alternatively, Equation 2.10 can be rewritten as

Lbuilding = Lknown − 2c∆τ
n

. (2.11)

Hence, using ∆τ obtained from Figure 2.11, with Lknown = 135 m, n = 1.467, Lbuilding
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was computed to be (131.18 ± 0.01) m.

Figure 2.11: Two plots of coincidence counts vs τ were obtained as the length of the signal
fiber was also unknown. The length of the building fiber can still be determined by taking 2
sets of measurements - first by using the building fiber, then with a fiber of known length.
The length of building fiber is then achieved by finding the difference.

The method can be applied to determine the length of any fiber with centimeter precision,

The achieved resolution is better than that of the optical time-domain reflectometry (OTDR),

in which recent advancements achieved a resolution of tens of centimeters [47]. However,

attention should be given to the coherence length of the source used - the unknown fiber

should be shorter than the source’s coherence length.

By knowing the length of fibers used, the interferometer arms can be made equal and

hence phase noise can be minimised. As a measure of success, a signal trace with low noise

should be expected when the inteferometer arms are set to be equal in length. Indeed, this

was realised - when the building fiber and a 131 m fiber were connected as the arms of the

interferometer (Figure 2.12).
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Figure 2.12: A signal trace with low noise after balancing the arms. Here, the sensing arm
is the building fiber, and the reference arm is a 131m fiber, such that L0 = 0.18m. The
bottom 2 graphs, where L0 = 6.2m and L0 = 15.2m respectively, are included for bases of
comparison.

2.4 Perturbation Sensing in Lab

Nonetheless, we postulate that our Michelson interferometer is be able to detect mechanical

perturbations in the environment. In this section, we attempt to do so in a lab setting.

To set an expectation, if the setup works according to the working principles discussed in

previous sections, we would be able to observe that there are more perturbations in the lab

in the day. The reason for this is that naturally, students and staff in the lab work mostly

in the day, hence their movements would be detected by the setup.

2.4.1 Methodology

The setup is given by Figure 2.5, with short fibers of 2m used in both arms.

A high pass filter was included in the output port, just before the oscilloscope so that

the setup only detects sudden and fast fluctuations, while ignoring slowly-drifting baseline
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noise of < 1 kHz. The upper bound of the detectable frequency was set by the oscilloscope,

at 20MHz. In other words, the sensing domain of the setup was between 1 kHz and 20MHz.

The oscilloscope was set in trigger mode, only saving waveforms when there are pertur-

bations in the lab causing the signal amplitude to rise above 12mV. This value was chosen

as it was realized that a 7dB gain is an acceptable threshold to detect perturbations (after

multiple attempts of tapping the table, opening the drawers, opening the lab door, etc.).

An example of a triggered signal is illustrated in Figure 2.13. Data was continuously saved

over 4 days, before being processed.

Figure 2.13: A sample waveform that was saved due to perturbations caused by opening the
lab door. The maximum signal amplitude exceeds the trigger value of 12mV.

2.4.2 Results

At the end of the 4 days, a graph of number of traces versus time was plotted (Figure 2.14).

As waveforms were only saved when perturbations were detected, given a point of time, the

maximum number of traces saved is 1. Hence, greater activity in the lab would be indicated

by more densely packed lines.
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Figure 2.14: A measure of lab activity (23 November 2020, Monday to 26 November 2020,
Thursday), shaded regions represent night, which in this case was defined to be the period
between 12 am and 6 am.

It is observable that during nighttime, there were hardly any perturbations detected.

The exception in the 3rd night was identified - it was caused by one of our group members

who entered the lab at 2.30 am. This indicates that our Michelson interferometer setup is

able to detect perturbations as our results suggest that it can distinguish between day and

night level of activity. Furthermore, it can also distinguish the busyness of the lab across the

4 days, with the busiest day being the 4th day, as the lines were the most closely packed.

2.5 Perturbation Sensing in Building

2.5.1 Methodology

To extend the scale of the previous experiment, we aim to detect perturbations in the

building, and so the building fiber was connected in the sensing arm. However, the same

data logging and processing methods from before are no longer practical. Since the building

fiber extends across the whole of S15, perturbations would always be present, making the

trigger method pointless.
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Instead, the high pass filter is removed (such that the setup is reverted back into that of

Figure 2.5). The oscilloscope is set to save the fast fourier transform (FFT) of the waveforms

continuously between 12pm of 14 January 2021 and 3 am of 15 January 2021. Mechanical

perturbations generally have low frequencies within 5 kHz, as identified in Section 2.3. With

this consideration, similar to measuring the level of activity in the lab in the previous section,

we hope to see that the amplitudes for frequencies in this regime will vary over time as a

result of perturbations, with more observable peaks in the day.

2.5.2 Results

Figure 2.15: A measure of building activity (15 January 2021, Friday to 16 January 2021,
Saturday). Our results agree with our expectations: amplitudes of frequencies (e.g. 1.02 kHz,
1.27 kHz and 1.52 kHz) < 5 kHz are high in the day, while low at night.

Indeed, it is observable that in the day, the amplitudes of the frequencies are higher than

those at night, suggesting further that our fiber-based interferometer is functioning as

intended.
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2.5.3 Difference in Temperature Fluctuations

However, since the two arms of the interferometer are in different environments, the

temperature fluctuations experienced by the two arms are likely to be different. Hence, it is

arguable that the fluctuations in amplitude are due to difference in temperature fluctuations,

instead of mechanical perturbations. To investigate the possibility of argument, we perform

the following series of calculations.

2.5.3.1 Thermal Expansion of Fibers

For silica, its thermal expansion coefficient is 4.1 × 10−7/◦C [48]. Using data from Weather

Underground, the largest change in temperature on 14 January 2021 is ∆T = 2 ◦F = 1.11 ◦C

which occurred over 30 minutes. Assuming that the entire length of the fiber experiences

the same temperature change, for a 131m fiber,

∆L = (131)(4.1 × 10−7 × 1.11) (2.12)

= 5.97 × 10−5 m (2.13)

Next, assuming that the length change happens uniformly over 30 minutes, the rate of

change of length of the fiber would be

dL

dt
= 5.97 × 10−5

30 × 60 × 60 (2.14)

= 5.53 × 10−10 m/s (2.15)

Hence, the corresponding frequency of the temperature change would be

f = v

λ
= 5.53 × 10−10

1550 × 10−9 (2.16)

= 3.56 × 10−4 Hz. (2.17)

2.5.3.2 Change in Refractive Index with Temperature

Another way that temperature changes can cause false detections in the setup is through the

changes in refractive index of the fiber. The thermo-optic coefficient of silica is 8 × 10−6/◦C

https://www.wunderground.com/history/daily/sg/singapore/WSSS/date/2021-1-14
https://www.wunderground.com/history/daily/sg/singapore/WSSS/date/2021-1-14
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[49]. Following the same series of calculations,

∆n = (1.467)(8 × 10−6 × 1.11) (2.18)

= 1.30 × 10−5 (2.19)

The rate of change of the refractive index of the fiber would then be

dn

dt
= 1.30 × 10−5

30 × 60 × 60 (2.20)

= 1.21 × 10−10 /s (2.21)

which translates to the following rate of change of optical path

dL

dt
= 2 × (1.21 × 10−10) × 131 (2.22)

= 3.16 × 10−8 m/s, (2.23)

using dL

dt
= 2Ldn

dt
[42]. Finally, the corresponding frequency of the temperature change

would be

f = v

λ
= 3.16 × 10−8

1550 × 10−9 (2.24)

= 2.04 × 10−2 Hz. (2.25)

In both cases, the frequency fluctuations due to the difference in temperature fluctuations

are too small, at least 5 orders of magnitude lower than the detected frequencies in Figure

2.15. With this, we conclude that the detections were not due to the temperature fluctuations.

2.6 Why Michelson Interferometry

In this chapter, we have highlighted the development of a Michelson interferometer that

is able to detect mechanical perturbations in both a lab and a building. Now that its

working principles, as well as its application have been explained in detail, it is easier to

understand why Michelson interferometry, and not other types, is chosen. There are many

types of interferometers, with more popular examples being the Michelson interferometer,

Mach-Zehnder interferometer and the Sagnac interferometer. While they each have their



2.6. WHY MICHELSON INTERFEROMETRY 23

own strengths, in the context of this thesis, Michelson interferometry would be the most

advantageous.

Unlike Mach-Zehnder and Sagnac interferometry, Michelson interferometry requires only

one submarine fiber as the sensing arm, while the reference arm can be a spool of fiber that

remains on land. This is helpful as it allows for ease of length adjustments of the reference

arm when attempting to equalise the length of the arms. It is unlikely that there are 2

submarine fibers which are equal in length, and even if they are, the other ends of the fibers

may not be at the same place, and thus coupling them into the same beamsplitter would be

a problem. With this in mind, employing the other forms of interferometry would require

the use of an external cavity to minimise phase noise in the setup as a result of arm length

difference of the order of kilometers. This is especially so because both arms in the other

mentioned types of interferometry are required to be connected.

Additionally, employing Michelson interferometry allows us to control to polarisation

states in the fibers easily, by simply connecting Faraday mirrors at the other terminals of the

fibers. In Mach-Zehnder and Sagnac interferometry, since the sensing and reference arms

are connected, the same cannot be applied. They would thus require additional components

like polarisation controllers.





3 Converting into a Heterodyne Phasemeter

While it has been shown that the Michelson interferometer is able to detect perturbations,

there is still room for improvement. Another limitation that the Michelson interferometer

has is that it is unable to determine the direction of the measured displacement. Since the

output power is sinusoidal, at the turning points the sensitivity to length goes to zero, and

the direction of motion becomes ambiguous [36]. Referring to Figure 3.1, it can be seen that

at the extreme points, e.g. the point indicated by the red ellipse, both positive and negative

displacements would lead to a decrease in the signal amplitude.

Figure 3.1: An ideal sinusoidal signal. At the extreme points (e.g. within the red ellipse),
both increase and decrease in displacement leads to a decrease in signal amplitude. Hence,
the direction of displacement is lost.

If we know the direction of displacement, we can then directly measure the differential

phase φd instead of just its cosine value. This is important as the range of an arccos function

is given by [0, π]. What this means is that if we were to try and unwrap the phase difference

from the signal obtained using a Michelson interferometer, the obtained phase would be

limited by that range, leading to discontinuities in the graph.

Hence, there is a need for a setup which enables us to extract direction so that we may

obtain the exact phase changes induced in the presence of mechanical perturbations, and

not just its cosine value. In this chapter, the conversion of the Michelson interferometer into

a heterodyne phasemeter is described, along with its working principles and application.

25
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3.1 Heterodyning the Setup

Figure 3.2: Heterodyne phasemeter setup. An acousto-optic modulator (AOM) is added
in the reference arm to shift the frequency of laser by 2Ω. In the detection arm, I/Q
demodulation is performed on the output signal from the photodiode.

The setup is similar to that of the Michelson interferometer, albeit with two main differences.

First, there is an acousto-optic modulator (AOM) which shifts the laser frequency by a

factor of Ω through the acousto-optic effect [50]. As the light beam passes through the AOM

twice, the laser frequency will by shifted by 2Ω. For our case, Ω = 80MHz.

Now, when the light beams of 2 different frequencies recombine, the beams will pick up

an additional phase corresponding to the difference in frequency, resulting in a beat-note.

Eout = 1
2Eine

2ikLx(1 + ei(2Ωt+φd)). (3.1)

The output power of light incident on the photodiode, Pout is then calculated to be

Pout = Pin
2 [1 + cos (2Ωt+ φd)]. (3.2)
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In the output port, the beat-note is then demodulated with both sine and cosine local

oscillators through a process called I/Q demodulation, so that the changes in optical phase

can be obtained unambiguously.

3.1.1 I/Q Demodulation

I/Q demodulation happens in the output port, after the detector. In Figure 3.2, the

heterodyning components are simplified. The actual setup is shown in Figure 3.3.

Figure 3.3: Close-up of the heterodyne component of the setup. The photodiode signal is
split into two, and are each passed into different mixers. Likewise, the signal from a local
oscillator is split, but through 2 fibers of different lengths, with a specified length difference.
This delay would cause one of the local oscillator signal to be out of phase by a factor of
π/2. After the mixers, the signals are then passed through low-pass filters, before being
analyzed at the oscilloscope.

The local oscillator in our case comes from a direct digital synthesis (DDS), which is

split into two fibers. The two fibers are selected such that the length difference between

them would cause one signal to be out of phase by the other by π/2. The in-phase signal is

termed as the I signal, while the out-of-phase signal is termed as the Q signal, hence the

name of this technique.

This required length difference can be found by using the equation

v = fλ, (3.3)
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or specifically,

λ

4 = v

4f (3.4)

where v is the speed of light in the fiber, f is the frequency of the signal and λ is the

wavelength. Equation 3.3 can be rearranged into Equation 3.4, resulting in a form which

explicitly gives the required length difference. With f = 160MHz and v = (0.659)(3 ×

108)m/s,

λ

4 = 0.3125m. (3.5)

The speed of light was multiplied by a velocity factor of 0.659 to account for the refractive

index of the fiber. With this information, the 2 fibers were then chosen such that they have a

length difference of about 30 cm, and with this we have our sine and cosine local oscillators.

The signal from the photodiode is split into two and then mixed with the local oscillators.

For the I term, it is demodulated with a cosine

I = Pin
2 (1 + cos (2Ωt+ φd)) cos (2Ωt) (3.6)

= Pin
2 [2 cos (2Ωt) + cos (4Ωt+ φd)) + cos (φd)]. (3.7)

On the other hand, the Q term is demodulated with a sine

Q = Pin
2 (1 + cos (2Ωt+ φd)) sin (2Ωt) (3.8)

= Pin
2 [2 sin (2Ωt) + sin (4Ωt+ φd)) − sin (φd)]. (3.9)

These quadrature signals are then passed through low pass filters, where all terms with

multiples of 2Ωt are eliminated. This leaves only the final term containing the differential

phase φd

I = Pin
2 cos (φd) (3.10)

Q = −Pin
2 sin (φd). (3.11)

The optical phase can then be unambiguously extracted over many wavelengths. An
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example of a readout of the heterodyne phasemeter when a perturbation (a tap on the table

in this case) is detected is shown in Figure 3.4.

Figure 3.4: Phase fluctuations unwrapped through I/Q demodulation, induced by tapping
on the table.

3.2 Perturbation Sensing in Lab

As a test, the oscilloscope is set to save waveforms continuously for a period of over a minute.

I/Q demodulation is then performed after data collection, and the results are shown in

Figure 3.5.
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Figure 3.5: Phase changes for a period over a minute. Data was collected in the lab at
4pm, on 24 March 2021. The bottom graph is subset of the top graph (indicated by the red
portion).

At first glance, the sudden dips and increases in the graph seem to indicate that there are

discontinuities, which would mean that the phase unwrapping process is not done correctly.

Discontinuities happen when the perturbation is large - large enough to cause the measured

phase to jump by more than π within one time step. However, this is not the case. In the

bottom graph of Figure 3.5, the maximum phase difference between consecutive data points

is found to be 0.432. This means that the sampling rate that was used here (50,000 samples

per second) is appropriate.

Another way to check if the results make sense is to estimate the speed of the induced

perturbation. Consider the same highlighted period in Figure 3.5. The drop in measured

phase is about 25 rad, and it happened within approximately 50ms. Using φd = 2k∆L, we

can thus determine the speed of the perturbation,

dL
dt = 1

2k
dφd
dt (3.12)

= 1550 × 10−9

4π

(
−25

50 × 10−3

)
(3.13)

≈ 0.609mm/s, (3.14)

which is a reasonable value.



4 Conclusion and Outlook

The thesis described the development of a fiber-based interferometric system capable of

detecting perturbations in the environment. When the fibers are perturbed, the heterodyne

phasemeter is able to measure and read out the changes in optical phase without any

direction ambiguity. Its design and instrumentation is largely based on the basic principles

of Michelson interferometry.

The importance of having global coverage of seismic sensors was introduced in Chapter

1, which motivates our choice of developing a fiber-based interferometer. Existing submarine

fibers offer an attractive option to seismic detection mainly because they have already been

installed in abundance [31]. Connecting them into the arms of an interferometer is therefore

a cost-effective alternative, as compared to deploying more OBSs in the ocean [26, 29, 30].

The choice of Michelson interferometry, as well as its principles, were briefly discussed

in Chapter 2. While there are various types of interferometry, Michelson interferometry

identifies as the most suitable, when considering the cost and complexity of the would-

be setup. In the same chapter, the construction and implementation of the Michelson

interferometer were highlighted in detail. Due to the prevalence of phase noise, having equal

paths is a necessity which can be achieved by the photon coincidence method. Perturbation

sensing was done in the lab and building, producing results that agree with our initial

expectations.

The problem of direction ambiguity was tackled in Chapter 3, where the Michelson

interferometer was converted into the heterodyne phasemeter. This was done by heterodyning

the setup in which I/Q demodulation can be performed to obtain the readout of phase

changes in the fibers. A short test was carried out in the lab, and with a simple analysis, we

concluded that the obtained results were reasonable.

Moving forward, larger scales of tests should be run with the heterodyne phasemeter.

For example, the next step could be attempting to sense perturbations in the building. In

the context of using fibers to detect earthquakes, special care should be taken to limit the

difference in temperature fluctuations in the two environments. The reason for this is that

the calculated frequency of changes in refractive index due to temperature coincide with

that of an earthquake’s. That aside, future efforts could also be focused on making the

setup more compact. The existing state of the heterodyne phasemeters uses a lot of fibers.

31
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Tendency to mess aside, this makes the setup more susceptible to unwanted noise in the

environment.
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