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Abstract
Thesis title: Control and Manipulation of Single Atoms for Interfacing with Light

The realization of efficient coupling between light and atoms is indispensable for
the construction of a distributed quantum network. To achieve this objective, we
investigate a free-space atom-light interface based on a high numerical aperture lens.
In our experimental setup, we employ a pair of aspheric lenses (NA=0.75) to tightly
focus light onto optically trapped single 87Rb atoms. The same aspheric lenses also
facilitate efficient collection of atomic fluorescence, useful for exploring concepts in
quantum optics.

Motivated by these capabilities, we first study the interaction between a coherent
field and a two-level system in the saturation regime. The emergence of a Mollow
triplet, which is a signature of optical nonlinearity, is observed in the single-atom
fluorescence spectra for different power levels measured with an optical cavity. When
the atom is illuminated with off-resonant light, further analysis through intensity
correlation measurements g(2) also confirms a preferential temporal ordering between
the emission of single photons originating from opposite fluorescence sidebands.
Moreover, this thesis presents a series of experimental techniques aimed at preserving
qubit coherence, minimizing atomic thermal motion, and scaling up the number of
qubits. Here, quantum bits are encoded in the magnetically sensitive Zeeman states
in atomic ground state hyperfine levels. Applying a Carr-Purcell-Meiboom-Gill
dynamical decoupling sequence successfully extends the T2 coherence time of a
superposition state to about 7 ms from an initial inhomogeneous dephasing time of
less than 100µs. Additionally, a Fano resonance is observed in the excitation spectra
of a single 87Rb atom using a pump-probe configuration. We then demonstrate the
cooling of atomic motion to less than 6µK by exploiting the Fano interference effect.
Finally, we show deterministic loading of single atoms into a pair of holographic dipole
traps spaced approximately 3µm apart. Subsequently, a two-photon interference
measurement is performed with the cooling fluorescence emitted by two separated
single atoms to illustrate the phenomenon of photon coalescence. The tools developed
in this thesis pave the way for the implementation of practical quantum information
protocols using a free-space atom-light quantum interface.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Regarded as one of the cornerstones of modern physics, quantum mechanics
offers some of the most precise predictions about the microscopic behavior of nature.
Although insights gained from quantum physics have contributed to the invention
of many modern technologies, including lasers, semiconductor electronics, and
magnetic resonance imaging [1], it was initially uncertain that one could possibly
manipulate individual quantum particles to accomplish something useful, until
Feynman proposed the idea of building a computer that could exactly simulate the
quantum nature of reality [2]. Sparked by the rapid developments in techniques
for experimenting with single atoms and single photons, this concept of harnessing
quantum mechanics for information processing has subsequently led to the emergence
of quantum information science.

Within this context, bit of information is encoded in a two-level quantum system,
coined as a qubit. A qubit is no longer limited to only being in the logical states of
0 or 1, but can be in a coherent superposition of states 0 and 1. Moreover, multiple
qubits can be entangled, for which the multi-qubit state can only be described as an
inseparable whole. These counter-intuitive properties enable quantum information
science to engineer novel technologies that can offer functionality beyond any classical
device, most notably in the fields of computation, cryptography, metrology, and
simulation.

Taking one of the most celebrated quantum algorithms as an example, Shor’s
algorithm can factor an integer into primes exponentially faster than the best
classical algorithm [3]. While this may seem to suggest that the conventional public-
key cryptography, like the widely used RSA scheme, is in serious trouble, only
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CHAPTER 1. INTRODUCTION

factorization of small numbers has been realized in proof-of-principle experiments
thus far (such as factoring 21 into 3 × 7 [4]). In fact, it has been estimated that for
Shor’s algorithm to crack a typical 2048-bit RSA code reliably, no less than tens
of millions of physical qubits are required [5]. Even for selected quantum sampling
algorithms that are considered more feasible in the noisy-intermediate scale quantum
(NISQ) computing stage [6], achieving “quantum supremacy” requires substantial
hardware resources. For instance, quantum supremacy is only manifested in the
recent pioneering experimental works with more than a hundred optical modes for
Gaussian boson sampling [7–9], and at least fifty logical qubits for sampling the
output of a pseudo-random quantum circuit [10, 11]. Overall, the scalability of
physical qubits is essential for quantum computers to be practically useful.

Distributed Quantum Network

One of the proposals to scale up quantum systems envisions the construction
of a distributed quantum network [12]. In this protocol, a stationary qubit forms
a small-scale information processing unit and is manipulated locally at a node in
the network. Subsequently, quantum information is transferred from one node to
another at a distant location with a flying qubit. To date, a range of systems
has been explored as potential stationary qubits, including quantum dots [13, 14],
color centers in diamonds [15, 16], trapped ions [17, 18], neutral atoms [19], and
superconducting circuits [20]. Much like in classical information processing, any
quantum system used for quantum information processing must allow efficient state
preparation, manipulation, and measurement with high fidelity.

For the flying qubit, the most natural candidate is a photon. This is because
photons only interact weakly with the environment, and hence they can preserve
coherent superposition states well over a long distance. In particular, photons at
telecom wavelengths can propagate through optical fibers with low transmission loss
(at 1550 nm) or low dispersion (at 1310 nm). Moreover, it represents an economical
choice, considering the existence of a vast network of optical fibers deployed by the
telecommunication industry. This pre-existing network infrastructure can signifi-
cantly reduce the required outlay cost for photon transmission over long distances.
Adding to the anticipation is the recent development in frequency converters that
allow for an efficient down-conversion to telecom wavelength from a short-wavelength

2



CHAPTER 1. INTRODUCTION

single photon emitted from a quantum emitter while preserving the quantum infor-
mation [21, 22]. Through careful engineering of wavelength conversions compatible
with multiple species of quantum emitters, this technique enables the entanglement
of qubits across heterogeneous platforms over long distances.

One landmark experiment for realizing the quantum network is the demonstration
of atom-photon entanglement. Conventionally, two distinct techniques are employed
for this purpose. The first approach relies on the spontaneous Raman scattering
process to achieve continuous-variable entanglement between ensembles of atoms
and light fields. Promising results have already been shown for atomic ensembles [23]
and rare earth ions in solids [24].

For the second method, the emitter is initialized in a suitable excited state, so that
a spontaneous emission process entangles the polarization of the emitted photon and
the final electronic state of the quantum emitter. Previous studies in this direction
encompass various systems including single neutral atoms [25–27], trapped ions [28],
nitrogen-vacancy centers [29] and quantum dots [30]. In all these demonstrations,
the entanglement distribution is restricted to tens of kilometers even after the
implementation of frequency conversion into low-loss telecom wavelengths, due to
decoherence in the atomic state [27]. Fortunately, the issue of atomic decoherence can
be mitigated by incorporating quantum error correction protocols [31], decoherence-
free subspaces [32, 33] or dynamical decoupling sequences [34–36] into the generation
scheme.

Another major challenge for the quantum network lies in achieving efficient
transfer of quantum information between a photonic qubit and an atomic qubit.
One popular remedy is to place the quantum emitter within an optical resonator to
enhance the strength of the light field. However, operating a cavity requires precise
active stabilization of the cavity length to maintain a substantial atom-light coupling,
restricting its potential for upward scalability. In the realm of nanophotonics, diverse
waveguide structures are engineered to achieve tight confinement of light via an
evanescent field [37–39]. Thanks to the recent advancement in nanofabrication
technology, it is now possible to combine those two concepts of evanescent field and
cavity, leading to the development of nanofiber cavities [40, 41] and whispering-
gallery-mode microcavities [42, 43] to demonstrate near-deterministic coupling.

3



CHAPTER 1. INTRODUCTION

Interfacing Single Atoms in Free Space

Employing a cavity or a nanowaveguide will impose boundary conditions on the
interface platform and can allow only a countable set of optical modes to interact
with the atom, which is often undesirable for the study of continuum dynamics in
quantum optics. One simple alternative approach involves tightly focusing light
fields onto single atoms in free space. To maximize the amplitude of the electric field
in the focus, the recipe is to transform the incident radiation into an atomic dipole
mode. As such, the coupling efficiency Λ, given by the spatial mode overlap between
the incident probe mode and the atomic dipole mode, can be used to quantify the
interaction strength:

Λ = |
∫
EdE

∗
indΩ|2∫

|Ed|2dΩ
∫

|Ein|2dΩ , (1.1)

with Ed the atomic dipole mode, Ein the incident radiation mode, and
∫
dΩ the

integral over the full solid angle. In particular, the physical bound for an incident
light mode focused down by a lens is given by Λ ≤ 0.5 [44].

Empirically, determining the coupling efficiency Λ is not straightforward. It
requires inference from the optical response of the atom, such as reflection measure-
ment. For that, the amplitude of backward scattered light collected in the input
mode is measured in relation to the incident probe power. For a weak coherent input
field, the backscattering light power depends only linearly on the probe power. As
such, the reflection coefficient R, quantified as the ratio between the backscattering
intensity and the probe intensity, is then stipulated by:

R(∆) = 4Λ2 Γ2

Γ2 + 4∆2 , (1.2)

with Γ the transition linewidth and ∆ the laser detuning from atomic resonance.
The maximum efficiency of retrieving a reflected single photon is then given by 4Λ2.

Another frequently employed measurement for assessing the interaction strength
is transmission spectroscopy. The principle underlying this technique is that the
light coherently scattered by the emitter undergoes destructive interference with
the incident beam on the detector. This interference results in the attenuation of
transmitted power, commonly referred to as extinction. For a weak input probe
field, the single-mode transmission coefficient T can be represented as

T (∆) =
∣∣∣∣1 − 2Λ iΓ

iΓ + 2∆

∣∣∣∣2. (1.3)
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Besides the aforementioned measurements that emphasize light intensity, a strong
interaction strength also implies a large phase shift imprinted by a single quantum
system onto a coherent beam. This is particularly interesting due to its potential
for realizing a photonic phase gate, in which the phase of a photon is altered based
on the atom’s presence or the internal state of the atom. It can be shown that the
phase shift δϕ has the form [45],

δϕ(∆) = arg
(

1 − 2Λ iΓ
iΓ + 2∆

)
. (1.4)

The phase shift is maximum at half linewidth detuning.
It should be noted that the formulations for the measurements provided above

remain applicable for a classical dipole as well. In the field of quantum optics,
predictions suggest that a two-level emitter can instigate nonlinear interactions
among photons. In particular, the saturable nature of a two-level emitter prevents
the absorption of multiphoton components, leading to a modification of the photon
statistics of the transmitted light. This is given by the second-order correlation
function,

g(2)(τ = 0) = (1 − 4Λ)2

(1 − 2Λ)4 . (1.5)

Notably, for Λ = 0.25, the atom can function as a photon turnstile that converts
a coherent field completely into a single-photon field [g(2)(τ = 0) = 0] [38, 46–48].
For Λ > (2 −

√
2)/2, we will observe that the transmitted light displays a bunching

behavior [g(2)(τ = 0) > 1]. This is because the one-photon Fock state is strongly
suppressed by the scattering process, leaving behind the multiphoton components
that saturate the atomic transition in the transmitted port [49].

Fundamentally, it is of interest to find the maximum achievable absorption
probability by focusing light onto a single quantum system. Although the atom-
light interaction in free space is typically weaker than in cavity QED systems, the
free-space approach is more robust and much simpler to set up. For those reasons,
explorations are being undertaken across a spectrum of focusing techniques, including
multi-element objectives [50–56], aspherical singlets [48, 57], Fresnel lenses [58],
metasurface lenses [59], and parabolic mirrors [60–62]. An overview of these works
is outlined in Table 1.1.

Here, we choose to achieve an efficient atom-light coupling by tightly focusing light
onto single atoms with an aspheric lens. Early experiments in our group employed

5



CHAPTER 1. INTRODUCTION

Experimental system Year Measurement Λ
198Hg+ [63] 1987 Extinction of ≤0.1 % ≤0.025 %

Quantum dot (microscope) [50] 2007 Extinction of 12 % 3.1 %
Dye molecule (microscope) [52] 2008 Extinction of 22 % 5.8 %

87Rb (aspherics) [57] 2008 Extinction of 9.8 % 2.51 %
87Rb (aspherics) [57] 2009 Phase shift of 0.97◦ 1.66 %

Organic molecule (microscope) [53] 2011 Extinction of 19 % 5 %
Phase shift of 3◦ 5 %

174Yb+ (parabolic mirror) [60] 2014 Saturation at 692 pW 1.8 %
87Rb (aspherics) [48] 2017 Extinction of 36.6 % 10.2 %

g(2)(0) = 0.934 10.2 %
174Yb+ (parabolic mirror) [62] 2017 Phase shift of 2.2◦ 3.7 %

Table 1.1: State of the art of atom-light coupling in free space.

an off-the-shelf molded glass aspheric lens with a numerical aperture (NA) of 0.55
and successfully demonstrated about 10 % extinction [57] and 1◦ phase shift [45] of a
weak coherent field. Subsequent work further investigated the excitation probability
of a two-level atom depending on the temporal profile of the photons. For the second
iteration under the same topic, a customized aspheric lens of NA = 0.75 is used for
the demonstration of 20 % extinction with single-sided illumination and nearly 40 %
extinction in a 4π configuration [48].

With the groundwork laid by previous efforts, we can now explore various
schemes and control techniques that can be useful in developing building blocks for a
distributed quantum network. First, the coherence of an atomic state is particularly
important because it limits the duration during which quantum information can
be maintained and transferred. Previously, we have examined the potential of
suppressing atomic motion-induced qubit dephasing by employing a linearly polarized
dipole trap [64]. With a high-fidelity coherent control of the ground state hyperfine
manifold, we look into the implementation of various dynamical decoupling schemes.
The construction of an optimal dynamical decoupling sequence also unveils the
spectral characteristics of the underlying qubit dephasing mechanism.

Second, the generation of highly non-classical light fields is of paramount impor-
tance to quantum information processing, contributing to heightened communication
security [65, 66] and enhanced measurement sensitivity [67, 68]. A single atom, the
smallest unit for a quantum light source, is of fundamental interest. The efficient
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fluorescence collection provided by our high numerical-aperture optics allows us to
measure the power spectrum of the resonance fluorescence from a single quantum
emitter, resolving the Mollow triplet spectrum [69]. Going one step further, we also
experimentally investigated the intensity cross-correlation between the sidebands of
the Mollow structure, motivated by the theoretical predictions pointing towards a
time ordering feature among the sideband photons [70]. This scheme can be a novel
approach for generating Fourier-limited photon pairs that might find applications
interfacing with atoms or atom-like systems as stationary nodes in a distributed
quantum network.

As the thermal motion of the trapped atom can severely impair the coherent
coupling between atom and light [71], an efficient cooling technique is always desirable
to bring down the atomic temperature. A ground-state laser cooling technique based
on electromagnetically induced transparency (EIT) has recently been proposed as
a robust solution that can cool several vibrational modes simultaneously through
continuous excitation [72]. Using the Zeeman sublevels in the hyperfine structure,
we demonstrate EIT cooling of an optically trapped single neutral atom.

There is also an attempt to increase the number of qubits in our experimental
system. Using the conventional wavefront shaping technique, we holographically
create two optical single-atom trapping sites in arbitrary geometries. We foresee
potentially using this platform for the generation of collective atomic states, with a
specific focus on exploring phenomena such as subradiance and superradiance [73].

Thesis Outline
The rest of this thesis is organized as follows:
In Chapter 2, we provide an overview of the fundamental aspects of the experi-

mental setup and offer a brief summary of each key component of the apparatus.
Particularly, the details of trapping, cooling, and manipulating single atoms are
provided along with their respective calibration measurements.

Chapter 3 focuses on measuring the power spectrum of the atomic fluorescence
utilizing a Fabry-Perot cavity. By elevating the intensity of the driving field into
the saturation regime, the spectrum shows the emergence of the Mollow triplet phe-
nomenon. With an off-resonant driving field, we confirm the presence of asymmetry
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in the intensity correlations between photons originating from the two sidebands of
the fluorescence spectrum.

Chapter 4 presents the realization of coherent control over the atomic ground state
hyperfine levels using a microwave field. By initializing the system in a superposition
state of the magnetic sublevels, we perform a Ramsey experiment to investigate
the coherence of the qubit. We further show that a suitable dynamical decoupling
sequence can suppress qubit dephasing significantly, extending the coherence time
by two orders of magnitude.

In Chapter 5, the emphasis shifts to the demonstration of a ground-state cooling
technique based on electromagnetically induced transparency (EIT). We resolve
the signature Fano profiles in the fluorescence scattering spectrum as well as the
temperature measurement. A final temperature of around 6µK has been achieved
with EIT cooling, a factor of two lower than the previous value obtained using the
polarization gradient cooling technique.

Chapter 6 documents the experimental efforts to scale up the number of single-
atom traps formed by the direct image of a spatial light modulator. We implement
the control system for the deterministic loading of single atoms in two dipole trap
sites. Moreover, the chapter delves into a discussion regarding limitations inherent in
the geometrical arrangement of the setup. A two-photon interference measurement
is performed on the cooling fluorescence scattered by a pair of single atoms.

Finally, we conclude the entire thesis as well as discuss further directions for
future research in Chapter 7.
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Chapter 2

Experimental Setup and Techniques

This chapter introduces the key components for trapping and manipulating single
87Rb atoms, which include the aspheric lens pair, the magneto-optical trap (MOT),
and the far-off resonance optical dipole trap (FORT). Particularly, we introduce the
release-recapture scheme to quantify the atomic thermal motion, and the parametric
excitation method to measure the trap profile. We also present an optical pumping
technique and a fluorescence-based lossless state detection technique for atomic state
preparation and detection.

2.1 Lenses in vacuum
The heart of the optical setup is a pair of customized aspherical lenses with high

numerical apertures (NA). They are manufactured by Asphericon GmbH with the
key properties, including the clear aperture, and the back and effective focal lengths,
labeled in Fig. 2.1.

The lenses serve the purpose of tightly focusing down a probe beam and a dipole
beam, as well as collimating fluorescence from a single atom. They are held together
in a confocal configuration using an aluminium holder (more details are provided
in Wilson Chin’s thesis [74]). This structure is placed inside the vacuum chamber,
maintained at ultra-high vacuum using an ion pump (Agilent Varian Starcell, 20 L/s).
Particularly, a readout from the ion pump current infers the current pressure to
be around 8 × 10−9 mbar, which corresponds to a mean free path of around 1.2 km
(using a temperature of 300 K and collision cross section between 87Rb atoms and
background gas molecules of 3 nm2 [75]). This background pressure will ultimately
limit the trapping lifetime of the single atoms to be around 4 s.
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Figure 2.1: Schematic of the aspheric lens used in this work. Key parameters here
are given for 780-nm light. The numerical aperture (NA) is 0.75. Anti-reflection
coating on both sides of the lens ensures less than 0.5% reflection for wavelengths
between 700 nm and 1400 nm.

2.2 Magneto-optical trap
A magneto-optical trap (MOT) is formed by a quadrupole magnetic field and

a three-dimensional red-detuned radiation pressure force to confine and cool the
atoms. Typically, a MOT has a trap depth on the order of Kelvins and a trapping
range on the order of hundreds of micrometers, allowing a large number of atoms
to be confined in a compact region [76]. Therefore, we can form a cold and dense
atomic cloud, which is going to be the source of laser-cooled atoms for the optical
dipole trap.

The MOT beams consist of 780-nm cooling light and 795-nm repump light. Both
the 780-nm and 795-nm beams are generated from a home-built external cavity
diode laser (ECDL) constructed with a diffraction grating in a Littrow configuration.
The 780-nm cooling light is red-detuned from the 52S1/2, F = 2 ↔ 52P3/2, F

′ = 3
closed transition by around 12 MHz using an acousto-optical modulator (AOM).
The repump light, nearly resonant to the 52S1/2, F = 1 ↔ 52P1/2, F

′ = 2 transition,
brings the atoms that are off-resonantly transferred to the F = 1 ground state back
to the F = 2 ground state, allowing them to resume on the closed cooling transition
cycles.
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The MOT beams are circularly polarized and retro-reflected to form three pairs
of counter-propagating beams with opposite polarization. To achieve cooling in all
directions, one MOT beam is placed in the horizontal direction perpendicular to the
lens axis, and the other two MOT beams are placed vertically with a tilt angle of
around 14◦, overlapping at the center of the lens pair. The horizontal MOT beam
carries cooling light of 300µW and repump light of 180µW with the same beam
waist of 1.1 mm. On the other hand, the vertical MOT beams carry cooling light of
150µW and repump light of 80µW, each having a beam waist of 1.1 mm.

The three pairs of MOT beams can interfere constructively or destructively at
the location of the atom. Since the MOT cooling rate and scattering rate depend on
the local intensity of the MOT light, we aim to avoid the interference effect that can
cause a large variance in the shot-to-shot fluorescence collection. Therefore, we use
piezoelectric actuators (Thorlabs KC1T-P) to stimulate movement on the mirrors
that direct the vertical MOT beams into the system. Typically, an 80 Hz signal with
an amplitude of 10 V continuously drives the piezos. This effectively washes out the
interference effect and produces a uniformly distributed atomic fluorescence level
scattered by the single atom (see the fluorescence telegraph in Fig. 2.5).

For the spatially varying Zeeman shift, a pair of coils in an anti-Helmholtz
configuration is employed to generate the quadrupole magnetic field. At an operating
current of 2 A, the quadrupole coils produce a magnetic field gradient of around
40 G/cm along the coil axis, and −20 G/cm in perpendicular directions at the region
around the coil center. The formation of the atomic cloud can be observed on the
imaging camera as the cold atoms scatter the cooling light in all directions. Figure
2.2 shows the images of the atomic cloud and also the optically trapped single atom
(described in Chapter 2.3) recorded on the camera placed along the optical axis of
the high NA lenses.

2.3 Far-off resonant optical dipole trap
Trapping cold atoms in a far-off resonant optical dipole trap (FORT) has become

a well-established technique in the field of atomic and molecular physics, nicely
summarized in several review articles [77, 78]. The main idea of this technique
is to induce a position-dependent dipole force based on the interaction between a
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(a)  (b)

(c)  (d)

20µm 20µm

20µm 50µm

single atomscatterings from the holder

Figure 2.2: We image the focal plane of the high NA lens onto a camera placed
along the optical axis (see Fig. 2.4). (a) Cooling fluorescence from the atomic cloud
formed by the MOT. (b) The dipole trap is switched on and overlapped with the
MOT. The presence of a bright spot indicates the loading of a single atom. (c) The
dipole trap and cooling light are switched on, without the quadrupole field. The
atomic cloud has been dispersed, but the trapped single atom (bright spot) can still
be observed. The three clusters of white regions in (a),(b), and (c) are scatterings
from the lens holder. (d) Shifting the camera imaging plane to set the clusters of
white regions in focus. This adjustment allows us to identify these regions as the
images of the aluminum holder.
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polarizable particle and laser light, by sending an intense tightly focused off-resonant
light. Here, we provide a brief overview of the theoretical background for optical
trapping.

2.3.1 Theory

We consider an atomic system interacting with a classical dipole light field.
The evolution of the quantum system is described by the sum of the free atomic
Hamiltonian HA and the atom–field interaction Hamiltonian V̂ (t):

Ĥ(t) = ĤA + V̂ (t)

= ĤA − d̂E1cos(ω1t), (2.1)

for a dipole light with a frequency of ω1 and a real electric field amplitude E1. Here,
d̂ is the atomic dipole operator, projected to the polarization of the driving field E1.

By treating V (t) as a weak physical disturbance, the new eigenstates are expected
to exhibit only small deviations from the original atomic energy levels. Therefore, for
any atomic energy level |n⟩, the perturbed eigenstate can be approximated through
the application of first-order time-dependent perturbation theory [79]:

|ψn(t)⟩ ≈ e−iωnt |n⟩ − i

ℏ
∑

k

e−iωkt |k⟩
∫ t

0
dt′ ⟨k| eiĤAt′/ℏV̂ (t′)e−iĤAt′/ℏ |n⟩

= e−iωnt |n⟩ +
∑
k ̸=n

e−iωkt |k⟩ dknE1

2ℏ
(ei(ωkn+ω1)t − 1

ωkn + ω1
+ ei(ωkn−ω1)t − 1

ωkn − ω1

)
, (2.2)

where ωkn = ωk − ωn is the energy difference between two atomic energy levels |k⟩
and |n⟩, and dkn is the dipole moment associated with the optical transition between
the |k⟩ and |n⟩ states.

Using these perturbative terms, one can evaluate the time-averaged energy shift
(AC Stark shift) of the state |n⟩ of the atom with

Un = − lim
T →∞

1
T

∫ T

0
dt ⟨ψn(t)| d̂E(t)

2 |ψn(t)⟩

≈ −
∑
k ̸=n

|dkn|2E2
1

4ℏ
( 1
ωkn + ω1

+ 1
ωkn − ω1

)
≡ −αn(ω1)E2

1 , (2.3)
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where αn represents the dynamic polarizability of state |n⟩ at frequency ω1. Here,
all the fast oscillation (at optical frequencies) terms have been averaged out.

Some crucial properties of the optically induced energy shift can be clearly seen
in the case of a two-level system. For a two-level atom described by a ground state
|g⟩ and an excited state |e⟩ with an energy spacing of ℏω0, the expression in Eqn. 2.3
allows us to retrieve the celebrated results:

Ug = −|deg|2E2
1(r⃗)

4ℏ
( 1
ω0 + ω1

+ 1
ω0 − ω1

)
= −3πc2

2ω3
0

( Γ
ω0 + ω1

+ Γ
ω0 − ω1

)
I(r⃗)

≈ 3πc2

2ω3
0

( Γ
∆
)
I(r⃗)

= −Ue , (2.4)

for a dipole beam detuning ∆ = ω1 − ω0. The electric field amplitude is represented
by the beam intensity I = ϵ0cE

2
1/2, and the dipole moment term is substituted by

the spontaneous decay term Γ = ω3
0|deg|2/3πϵ0ℏc3. From the expression in Eqn. 2.4,

one observes that for a red-detuned light (∆ < 0), the interaction is attractive for
the ground state (Ug < 0). Therefore, focusing down a red-detuned light can create
a potential well that traps an atom.

However, the condition of a red detuning (∆ < 0) alone is not sufficient to ensure
the functionality of optical trapping. Another mechanism that one has to consider
is the radiation pressure exerted by the dipole beam. This is a dissipative process
described by the rate at which a two-level system scatters the trapping light:

Rsc = 3πc2

2ℏω3
0

ω3
1
ω3

0

( Γ
ω0 + ω1

+ Γ
ω0 − ω1

)2
I(r⃗)

≈ 3πc2

2ℏω3
0

( Γ
∆
)2
I(r⃗). (2.5)

Comparing the expressions for Eqn. 2.4 and Eqn. 2.5, we can confirm that the
dipole potential scales as I(r⃗)/∆, while the scattering rate scales as I(r⃗)/∆2. Since
the scattering rate decreases much faster than the conservative trapping potential
as a function of detuning, we typically employ trapping lasers with large detunings
of several THz [77]. An optical trap operating in this regime is referred to as a
far-off-resonant optical dipole trap (FORT).

14



CHAPTER 2. EXPERIMENTAL SETUP AND TECHNIQUES

-20

-10

 0

 10

 20

 750  1000  1250  1500

(a)

L
ig

h
t 
s
h
if
t 
(M

H
z
)

Dipole beam wavelength (nm)

 750  1000  1250  1500

(b)

Dipole beam wavelength (nm)

Figure 2.3: Light shift of (a) the ground state 5S1/2 |F = 2, mF = 0⟩ and (b) the
excited state 5P3/2 |F ′ = 3, m′

F = 0⟩ as a function of dipole beam wavelength for a
dipole beam intensity at 1 mW/µm2. Dashed lines indicate optical transitions to
other fine structures.

When considering a physical atom rather than the idealized two-level system,
the sum of all possible transitions has to be evaluated to calculate the overall optical
potential. Particularly, the dipole coupling term can be boiled down to

⟨F mF | d̂q |F ′ m′
F ⟩ = ⟨F ||d̂||F ′⟩ ⟨F mF |F ′ 1m′

F q⟩ , (2.6)

which is a product of a reduced matrix element and the corresponding Cleb-
sch–Gordan coefficient. While in general the algebra involved can be tedious,
there are already a vast number of open-source packages for various programming
platforms to compute the coupling term above [80, 81]. As an example, we show the
wavelength dependence of the atomic level shifts for a 87Rb atom in Fig. 2.3. Here,
the calculations are performed for the electrical dipole permitted transitions up to
the principal quantum number of n = 7 for a dipole beam intensity of 1 mW/µm2.

Generally, the dipole potential for the ground state is attractive for wavelengths
longer than 795 nm, and repulsive for wavelengths shorter than 780 nm. In fact, an
optical trap can also be formed using repulsive dipole light by surrounding a spatial
region. The advantage of a blue-detuned dipole trap is that the atom generally stays
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Atomic state Scalar cs Vector cv Tensor ct

5S1/2, F = 2 -1.000 0.043 0.000
5S1/2, F = 1 -1.000 -0.043 0.000
5P3/2, F

′ = 3 0.742 0.122 -0.072
5P3/2, F

′ = 2 0.455 0.158 0.000
5P3/2, F

′ = 1 0.169 0.373 0.430
5P3/2, F

′ = 0 0.455 0.000 0.000
5P1/2, F

′ = 2 0.556 0.204 0.000
5P1/2, F

′ = 1 0.556 -0.204 0.000

Table 2.1: Coefficients for scalar, vector, and tensor decomposition of the AC Stark
shift for a dipole light of 851 nm, following the expression in Eqn. 2.7.

in the intensity minimum, which can effectively reduce the off-resonant scattering rate.
There was an attempt in our group to construct a blue-detuned dipole hollow beam
trap using a wavelength of 740 nm. More details about this trapping configuration
are described in Boon Long Ng’s thesis [82]. In the remaining part of this thesis, we
will only focus on the red-detuned dipole beam with a wavelength of 851 nm.

Accounting for the polarization of the dipole beam and the dipole strengths
between Zeeman sublevels, it is possible to decompose the light shift into a compact
form consisting of a scalar, a vector, and a tensor term [64, 83]:

Ĥls,F = U0
(
cs + cv Im[ϵ∗ × ϵ] · F̂ + ct|ϵ · F̂|2

)
, (2.7)

where U0 is the dipole trap depth, ϵ the polarization unit vector of the trapping
field, F̂ the total angular momentum operator, and cs, cv, ct are the coefficients of
the scalar, vector, and tensor light shifts, respectively. These coefficients can be
computed numerically by summing over the relevant optical transitions, as given
in Eqn. 2.3. The calculated values are listed in Table 2.1 for the hyperfine levels
in 5S1/2, 5P1/2, and 5P3/2 manifolds. This allows us to estimate the light shifts on
the hyperfine levels of interest, or conversely deduce the trap intensity from the
resonance shift.

2.3.2 Implementation

To exclusively trap only a single neutral atom, the FORT needs to be formed
in a tightly focused configuration. The mechanism at play here is the collisional
blockade effect [84]. In the presence of cooling light, two or more atoms that are
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Figure 2.4: Optical setup for probing light-atom interaction in free space. A single
atom is held at the joint focus of two high NA lenses using a far-off-resonant optical
dipole trap (FORT) within an ultra-high vacuum (UHV) chamber. The lenses are
also used to focus probe light onto the atom and to collect fluorescence light scattered
by the atom. APD: avalanche photodetector, FM: flip mirror, DM: dichroic mirror,
SLM: spatial light modulator, QWP: quarter-wave plate, (P)BS: (polarizing) beam
splitter, B: magnetic field, UHV: ultra-high vacuum.

trapped in a small region undergo light-assisted collisions, which result in both
colliding atoms being lost from the trap [85]. Figure 2.5 shows the typical signature
of sub-Poissonian loading of single atoms with either zero or one atom trapped.

In our setup, the FORT is formed by tightly focusing a dipole beam using the
same high-NA aspheric lens for probing light-atom interaction. Figure 2.4 shows
the schematic of our optical setup. The trap laser is an 851-nm Titanium-Sapphire
laser (M Squared SolsTis), pumped with a 532-nm diode-pumped solid-state laser
(Coherent Verdi V10). The dipole beam is linearly polarized and collimated from
a single mode fiber to have a beam radius of 2.7 mm using an off-the-shelf triplet
collimator (Thorlabs TC25APC). The dipole beam is directed onto a reflective
spatial light modulator (SLM, XY512L from Meadowlark Optics), which functions
like a mirror by default but additionally allows for the manipulation of the wavefront
of the dipole beam. This gives us the flexibility to steer the beam direction, or to
form more complex beam profiles, including those that carry an orbital angular
momentum [86, 87]. The dipole beam is then combined into the same beam path as
the 780-nm probe beam for interfacing the atom.
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Figure 2.5: (a) Fluorescence of single atoms under continuous illumination of cooling
beams. (b) Histogram of the single atom fluorescence for time traces (left) extended
to ten minutes.
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Figure 2.6: Calculated axial shift in the focal plane at different wavelengths relative
to 780 nm due to chromatic aberration in the lens. The dashed lines indicate the
reference at 780 nm and the wavelength of the dipole beam (851 nm).
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Correction for chromatic aberrations

Ideally, the dipole beam, upon being focused down by the high NA lens, is
expected to yield a Gaussian waist size of approximately 0.6µm, based on the input
collimated dipole beam radius we employed. Achieving such a diffraction-limited
performance would require the optics to be aberration-free, which is unfortunately
not feasible since the aspheric lens was designed for a 780-nm light beam. Even
worse, there will be a shift in the focal planes due to chromatic aberrations caused by
the difference in wavelength between the dipole beam and the probing beam. With
the surface profiles and dispersion of the lens material deduced using a Sellmeier
equation, we can compute the effective and back focal lengths for a given input
wavelength. As shown in Fig. 2.6, the calculations show a shift of around 21µm
between the back focal planes for collimated 780-nm and 851-nm light beams.

Conveniently, the SLM can function as a lens, allowing us to adjust the divergence
of the beam, thereby facilitating the overlap of the two focal planes. To achieve
the optimal alignment, we vary the focusing of the SLM phase lens to maximize
the fluorescence collection in the probe mode. As a result, we obtain the highest
collection for the SLM phase pattern displaying as a Fresnel lens with a focal length
of 2.4 m, with the SLM positioned at a distance of approximately 1 m from the high
NA lens. Using the standard ray optics propagation, the estimated focal shift of
FORT is around −f 2

NA/(L+ fNA − fSLM ) ≈ −25µm, which is fairly consistent with
the calculated axial shift in Fig. 2.6. Furthermore, the compound optical system will
have an effective focal length of 10 mm, leading to an estimated diffraction-limited
beam waist of 1.0µm.

Dipole power stabilization

To maintain a stable power level for the dipole trap over time, we implement
the following power stabilization scheme: we sample a small part of the dipole
beam power before it enters the high NA lens and measure it using a photodiode.
Subsequently, the photodiode reading and an analog input (reference power level)
are fed into a differential amplifier to generate an error signal for the reference level.
The error signal is directed to control a radiofrequency (RF) attenuator, which in
turn, regulates the RF power supplied to drive the AOM associated with the dipole
beam. As this power stabilization scheme is employed only for long-term stability,
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Detected fluorescence

event count > 40?

Detected fluorescence

event count > 40?

MOT and dipole trap are switched on;

integrate fluorescence collection over 20ms.

MOT is switched off.

Yes, the atom survives

Yes

No, reload a single atom

No

Experimental sequence

Cooling and repump beams are switched on;

integrate fluorescence collection over 20ms.

Figure 2.7: Flowchart illustrating a standard experimental sequence.

the control bandwidth is limited to about 500 Hz.
For the loading of a single atom, we employ a dipole beam power of 11.6 mW,

which corresponds to a trap depth of kB × 2 mK. However, for experiments involving
clean atomic spin states, we will ramp down the dipole beam power to a typical
trap depth of kB × 0.86 mK (at an input power of 5.04 mW) to avoid detrimental
tensor light shift effects.
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2.3.3 Loading an atom into dipole trap

The experimental sequence is run on a home-built digital pattern generator based
on a field-programmable gate array (FPGA), which allows for sequence branching
conditioned on the input counts. A basic sequence is illustrated in Fig. 2.7. We
always start with forming a a cold cloud of 87Rb atoms using a MOT. To load a
single atom, the MOT is spatially overlapped with the FORT. Once an atom is
loaded into the FORT, the count rate on the APD will increase from 200 s−1 to
7000 s−1. This fluorescence will be collected by our experimental control system
during a qualifying time window of 20 ms. If more than 40 photoevents are detected
in this window, an atom is loaded into the dipole trap with a high probability (we
refer to this as the “fluorescence trigger”). On qualification, the system branches
to a sequence where the MOT is turned off to prevent further loading. Then the
preloaded experimental sequence will take place, before a second qualifying test to
exclude measurements where the atom was lost. If the atom survives the second
qualifying test, the control system will branch back to the experimental sequence
again. Otherwise, the MOT beams and quadrupole field will be switched on again
for forming the 87Rb cloud in order to load a new atom into the FORT again.

2.3.4 Atom lifetime

The atomic lifetime is an important parameter because it determines the number
of successful measurements that can be performed in a given time window, enabling
the accumulation of data for improved statistical accuracy. It is also an indication
of the atomic temperature since atoms with higher energy tend to escape the dipole
trap faster. Nonetheless, the atomic lifetime is notably influenced by the specific
experimental sequence, as the light scattering can significantly elevate the atomic
temperature.

We empirically measure the lifetime of the single atoms in the dipole trap without
continuous illumination of the MOT beams, which should be the upper bound for
how long an atom can stay inside a dipole trap. This can be determined by measuring
the survival probability after a certain duration, upon confirming that there is an
atom loaded into the trap. The measurement result is shown in Fig. 2.8. The survival
probability fits an exponential curve with a decay time of around 2.51 ± 0.06 s. This
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Figure 2.8: Lifetime of the atom in the optical dipole trap. The solid line represents a
fit to the exponential function, indicating a lifetime of 2.5 s. Error bars represent the
standard error of binomial statistics accumulated from 200-3000 repeated sequences.

dark lifetime should be mainly limited by one-body loss due to the collisions with
fast atoms from the background gas. In our system, a typical experimental sequence
lasts about 100 ms, which implies that each atom loading results in approximately
25 experimental runs on average.

2.3.5 Dipole trap as a harmonic trap

Near the bottom of the dipole trap, the Gaussian trap can be approximated as a
harmonic trap by performing a Taylor expansion on the radial distance ρ and axial
distance z from the trap center:

U(r) = −U0e
−2ρ2/w(z)2 1

1 + (z/zR)2

≈ −U0(1 − 2
w2

0
ρ2 − 1

z2
R

z2), (2.8)

where U0 is the trap depth, w0 the beam waist, zR the Rayleigh range. By comparing
the quadratic terms, we obtain the trap frequencies as a function of the beam intensity
and geometry, as given by

ωρ =
√

4U0

mw2
0
, ωz =

√
2U0

mz2
R

, (2.9)

where m is the mass of the atom.
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To measure the trap frequencies, we parametrically heat the atoms by modulating
the trap laser power. This can be seen from Eqn. 2.9, which states that the square of
trap frequency is proportional to the trap potential. In the presence of a sinusoidal
modulation in trap power, the atomic motion can be mathematically represented as
a Mathieu equation [88]:

ẍ(t) + ω2
0

(
1 + h sin (ωmt)

)
x(t) = 0, (2.10)

where x represents the position of the atom relative to the trap center, ω0 the trap
frequency, ωm the modulation frequency, and h the modulation depth. Although the
solutions for Eqn. 2.10 cannot be represented analytically with standard functions,
it is known that the motion will become unbounded at the primary parametric
resonance frequency at ω(res)

m = 2ω0 [89].
To drive the parametric resonances for the various atomic motional degrees

of freedom, we run the following experimental sequence: after successful loading
of a single atom, we switch off the MOT beams and quadrupole field, leaving
the FORT on. We then modulate the power of the dipole beam at a modulation
frequency ωm by sinusoidally modulating the amplitude of the radio frequency (RF)
voltage that drives the dipole beam AOM. This modulation is applied for a duration
of τm = 100 ms for the lower modulation frequencies (ωm/2π between 5 kHz and
40 kHz) and modulation depth of 35 %. For the higher modulation frequencies
(ωm/2π between 45 kHz and 200 kHz), we apply the modulation for a duration of
τm = 10 ms with a modulation depth of 25 %. The longer modulation duration for
the lower frequency is to ensure the parametric heating undergoes a similar number
of oscillation cycles. Lastly, we detect the presence of a single atom by collecting the
fluorescence from the illumination of cooling beams. By scanning the modulation
frequency ωm, we observe a reduction in atom survival probability in the trap at
the parametric resonance frequency.

As shown in Fig. 2.9, we observe a reduction of atom survival probability at
20 ± 1 kHz and 147 ± 5 kHz. Knowing that a focused Gaussian beam trap is typically
anisotropic (stronger confinement in the radial direction), we then deduce an axial
frequency of ωz/2π = 10 ± 0.5 kHz and a radial frequency of ωρ/2π = 73.5 ± 2.5 kHz.
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Figure 2.9: Parametric heating of the optically trapped atom to determine trap
frequencies. We observe parametric resonances at 2ωz = 2π × (20 ± 1) kHz and
2ωρ = 2π × (147 ± 5) kHz. Error bars represent the standard error of binomial
statistics accumulated from 100-900 repeated sequences.

2.4 Polarization gradient cooling
For simplicity, a qubit system interacting with a flying photon is commonly

assumed to be a static object. Practically, a single atom will always carry kinetic
energy and move around in the dipole trap. This is generally undesired because
atomic motion will introduce light shifts with respect to the light field. There are two
mechanisms behind this: the Doppler shift due to the relative velocity between the
atom and the light field, and the position-dependent light shift due to the relative
position between the atom and the center of the dipole trap.

To mitigate these unwanted thermal effects, an efficient cooling method is
necessary. For alkaline atoms with more than two Zeeman states, it has been known
that polarization gradient cooling (PGC) is a well-established method to achieve
sub-Doppler cooling [90, 91]. When subject to a pair of counter-propagating σ+-σ−

cooling light beams, the atomic motion will adiabatically redistribute population
within the spin states of the ground state manifold, which gives rise to an unbalanced
radiation pressure to slow the atom down. This phenomenon can be simplified as a
damping coefficient that relies on the intensity of the cooling light. Experimentally,
we employ the cooling scheme by using an optimized reduced cooling light power.
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Figure 2.10: Experimental sequence for “release-and-recapture” technique to charac-
terize atomic temperature.

2.4.1 Temperature characterization

To quantify the atomic temperature, we implement the standard release-and-
recapture technique as described in [92]. The fundamental idea behind this approach
is to gain insights into the energy distribution of a single atom by switching off the
dipole trap for a variable time τ for the atom to diffuse away from the trapping
region, and then determining the probability of recapturing the atom. Since an
atom with higher energy travels faster, the atom can escape the trapping region in
a shorter release interval τ , as compared to the atoms with lower energy.

The experimental sequence is shown in Fig. 2.10. After a single atom is success-
fully loaded into the FORT, we perform PGC for 10 ms by reducing the total power
of the three cooling beams to 50µW from 600µW. It is worth mentioning that due
to the AC Stark shift exerted by the dipole trap, the cooling light is effectively
∆/2π = −67 MHz red-detuned from the F = 2 ↔ F ′ = 3 closed transition. We
then switch off the MOT beams and ramp down the dipole beam power. This is
because at the end of PGC, the atoms typically have a low temperature of around
tens of µK. The reduced FORT potential (from 2 mK to 0.86 mK trap depth) allows
the atom to escape more easily, giving us a better signal to work with. In the next
step, we release the atom by switching off the dipole beam over 13 different intervals
ranging from 1µs to 80µs. Finally, we recapture the atoms by switching on the
dipole beam and detect the presence of the single atom by fluorescence detection
with the MOT beams.
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Figure 2.11: (a) Release-and-recapture measurement to deduce atomic temperature.
Comparison of atom recapture probabilities to the Monte Carlo simulation (blue lines)
shows that atomic temperature is around 13 ± 0.3µK (red points) after performing
PGC and around 49 ± 1µK (green points) without performing PGC. Error bars
represent the standard error from binomial statistics. Inset: Extracted χ2 from the
fit to the Monte Carlo simulation for atoms of various temperatures after performing
a PGC. (b) Recapture probabilities after a release interval of 20µs for various
cooling beam powers set during the PGC stage. The highest recapture probability
is observed for 50µW, indicated by the dashed line.

The “release-and-recapture” result after applying a PGC sequence is indicated
by the red points in Fig. 2.11(a). From these measurements, we deduce that the
typical temperature achieved after applying a PGC sequence is around 13.0 ± 0.3µK.
As a comparison, we also include the recapture probabilities without performing
PGC, indicated by green points. The temperature observed without performing
PGC is determined to be 49 ± 1µK.

The choice of applying PGC with a total cooling power of 50µW is empirically
determined. We compare the recapture probabilities with the release interval
τ = 20µs after performing a PGC at varying cooling beam optical powers. The
measurement result is shown in Fig. 2.11(b). This outcome will serve as the point
of reference for subsequent experiments.
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2.5 Ground state manipulation
For probing atom-photon interaction, we choose to restrict ourselves to only

the 52S1/2, F = 2,mF = −2 and 52P3/2, F
′ = 3,mF ′ = −3 states. This necessitates

the implementation of an optical pumping sequence to prepare the atom in the
desired electronic state at the beginning of each experimental run. To this end,
a state-selective detection scheme is employed to verify the optical pumping by
monitoring the variations in atomic population over time.

2.5.1 Hyperfine state detection

We employ a lossless state-detection scheme to discriminate the hyperfine state
of the atom [93]. In every readout attempt, we detect the atomic fluorescence
by interrogating the atom with a weak 780-nm probe light near resonant to the
52S1/2,F = 2 ↔ 52P3/2,F ′ = 3 transition. If the atom is in the 52S1/2,F = 1 (dark)
state, this state-detection light is detuned from the nearest optical transition by
more than 6 GHz, and thus the atom will not scatter any photon. In contrast, when
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Figure 2.12: Histogram for fluorescence detection probability with a weak on-resonant
excitation beam for atoms prepared in a bright state (red) and a dark state (blue),
respectively. Inset: Readout fidelity F for setting different detection thresholds. The
highest state readout fidelity is 97.4 ± 0.4 % for a set threshold of 3 detection events.
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the atom is initially prepared in the 52S1/2,F = 2 (bright) state, the incident light
is almost on resonance, facilitating the observation of multiple scattering events.

To verify the state-detection scheme experimentally, we prepare the atom in
the bright state by illuminating the atom with only MOT repumper light, before
collecting fluorescence scattered by the on-resonant probe light over 600µs. We then
repeat this again after depumping the atom into the F = 1 dark state by applying
the red-detuned cooling beams for 10 ms. Figure 2.12 shows the typical histogram of
detected fluorescence, accumulated for around 3300 experimental runs. We see that
for the dark state, the average photodetection number n̄d is 0.36. For the bright
state, we have an average photodetection number of n̄b = 11.7.

As the two distributions are clearly separated, it is possible to discriminate the
two hyperfine states from the number of detection events. We define the readout
fidelity F to be the probability with which the correct atomic hyperfine state is
inferred in a single readout attempt. This probability is averaged over the two
scenarios of initializing in either the bright state or the dark state with equal chance,
which gives

F = 1
2
(
P (detect dark|dark) + P (detect bright|bright)

)
. (2.11)

By analyzing the collected fluorescence data above, using a discrimination threshold
of 3 detection events results in the highest readout fidelity of 97.4 ± 0.4 % (see the
inset of Fig. 2.12). At this set threshold, there is a probability of 95.6 ± 0.4 %
(99.2 ± 0.2 %) to detect more than or equal to (less than) 3 detection events for an
atom prepared in the bright (dark) state.

2.5.2 State initialization by optical pumping

To ensure the validity of assuming a 87Rb atom to be a clean two-level system,
we mostly focus on the F = 2,mF = −2 ↔ F ′ = 3,mF ′ = −3 closed transition in
this thesis. Hence, at the beginning of each experimental run, the atom has to be
prepared in the F = 2,mF = −2 state for interfacing with the incoming probe light.
To this end, we adopt the standard optical pumping technique [94]. A circularly
σ− polarized repumping laser at 795 nm, which resonantly drives the transition
from 52S1/2, F = 1 to 52P1/2, F

′ = 2, is applied along the optical axis to transfer
the atomic population to F = 2. At the same time, a pumping laser is applied
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Figure 2.13: Optical pumping to prepare single atoms in the maximal Zeeman state.
The red (blue) arrows indicate the transitions driven by the circularly σ− polarized
780-nm pumping (795-nm repumping) light. Single atoms will be decoupled from
the pumping light once it ends up in the 52S1/2, F = 2,mF = −2 Zeeman state since
no allowed transition exists.

along the optical axis with the same σ− polarization, such that transitions from
52S1/2, F = 2 to 52P3/2, F

′ = 2 with ∆mF = −1 are driven (see Fig. 2.13). In this
way, the single atom will be decoupled from the pumping light once it ends up in the
52S1/2, F = 2,mF = −2 state, avoiding additional recoil heating due to fluorescence
scattering.

To investigate the performance of our optical pumping scheme, we measure the
atomic hyperfine state following the application of the pumping lights for different
pumping durations. For an atom initialized in a mixture of different Zeeman states
in F = 2 by the MOT repumper beams, the σ− pumping beam depumps the atomic
state with a time constant of 600 ± 50µs, as shown in Fig. 2.14(a). We observe that
the steady-state bright state population is not zero. This is compatible with the
fact that the atom is decoupled from the depumping process once it is transferred
into the desired F = 2,mF = −2 state. In Fig. 2.14(b), we deduce a time constant
of 110 ± 20µs by applying the σ− repumper light on the atom initialized in the
F = 1 state with the red-detuned MOT cooling lights. With both the σ− pumping
and repumping light in operation, a single atom can be deterministically prepared
in the F = 2,mF = −2 state with an exponential time constant of 135 ± 30µs
(see Fig. 2.14(c)). In the following experiments, we typically perform the optical
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Figure 2.14: Optical pumping to prepare a single atom in the maximal Zeeman
state. Three measurements are performed to confirm the proper functioning of
optical pumping: (a) depumping beam only for the atom initialized in the F = 2
ground state, (b) repumping beam only for the atom initialized in the F = 1 ground
state, and (c) both depumping and repumping beams for the atom initialized in the
F = 1 ground state. Error bars represent the standard error of binomial statistics
accumulated from around 300 repeated sequences.
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pumping for 10 ms.

2.6 Transmission measurement
We routinely perform transmission measurements on a single atom to benchmark

the system: (1) to estimate the mode-matching efficiency between the atomic dipole
mode and probe mode, and (2) to measure the AC Stark shift induced by the dipole
beam from the resonant frequency shift.

The experimental sequence is described in Fig. 2.15. After the atom is loaded, we
apply 10 ms of PGC to cool the single atom down to 13µK. Then, we lower the trap
depth and switch on the quantization magnetic field of 14.4 G along the optical axis.
An optical pumping scheme prepares the atom in the state 52S1/2, F = 2, mF = −2
as described in Chapter 2.5.2. Next, we apply 780-nm probe light resonant with the
52S1/2, F = 2, mF = −2 ↔ 52P3/2, F ′ = 3, m′

F = −3 transition for 1 ms at various
probe detunings, and record the transmission on the APD (mean photodetection
number n̄ = 60). As a reference, we also want to record the transmission without the
atom taking part in the scattering process. Therefore, we apply for 5 ms red-detuned
MOT cooling light without a repumper beam to depump the atomic state to the
52S1/2 F = 1 dark state, before applying probe light again for reference. Finally,
we check if the atom is still present in the trap by measuring the fluorescence from
cooling light. If the atom is gone, there is a chance that the atom loss happens
during the probing stage and that will cause a problem to the measurement. The
transmission data will be discarded in this case and we will wait for the next atom
loading. Else, we will go back to the PGC step and repeat the procedures.

A typical transmission spectroscopy measurement is shown in Fig. 2.16. The
probe transmission is obtained by normalizing the transmitted photon count in the
bright state over the transmitted photon count in the dark state. Probe detuning
in the x-axis refers to the frequency from the 52S1/2 F = 2 ↔ 53P3/2 F

′ = 3 D2

spectroscopy line. From the fit to a Lorentzian function (solid line), we can infer a
linewidth of 2π × (7.0 ± 0.2) MHz and extinction of 21.2 ± 0.4%. This allows us to
deduce the mode-matching coefficient Λ = 5.6 ± 0.1 % according to Eqn. 1.3.

The transmission resonance is around 2π× (9.4 ± 0.1) MHz blue shifted from the
D2 spectroscopy line. This is due to magnetic Zeeman shift ∆EB and dipole trap
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Figure 2.16: Transmission spectroscopy for a weak coherent laser. The solid line is
a fit to a Lorentzian function. Error bars represent the standard error of the mean
determined from around 800 repeated experimental sequences.
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light shift ∆EAC. With the bias magnetic field of 1.44 mT applied, the corresponding
Zeeman shift between the two levels is approximately ∆EB/h = 20 MHz. Comparing
to the AC Stark shift calculations in Eqn. 2.7, we can deduce a trap depth of
U0 = kB × (0.864 ± 0.003) mK.

Ideally, the transmission linewidth should match the natural linewidth of the atom,
2π × 6.065 MHz. Here, the measured linewidth is slightly broader (by 2π × 1 MHz)
than the natural linewidth. We hypothesize that this broadening arises from the
position-dependent light shift in the dipole trap, caused by the thermal distribution
of the atoms.

2.6.1 Absorption imaging of single atom

In the previous part, the transmission measurement is performed with the probe
light projected into the well-defined spatial mode of a single-mode fiber. Here we
explore the possibility of conducting a transmission measurement using a camera,
which could possibly provide us with more spatial information about the mode-
matching between the probe mode and atomic dipole mode.

The experimental sequence for the absorption imaging on a camera follows the
sequence outlined in Fig. 2.15. The sole distinction lies in the fact that rather
than detecting transmitted photons with an APD, we capture images with a com-
plementary metal-oxide-semiconductor (CMOS) camera (PCO panda 4.2) with a
pixel size of 6.5×6.5µm2. Here, after the probe beam interacts with the atom and
passes through the high NA lens pair, it is directed into the camera imaging system
using a flip mirror. An imaging lens (achromatic doublet AC254-100-B, focal length
f = 100 mm) focuses down the probe beam onto the camera, which is externally
triggered by a signal connected to our experimental control system. We capture two
photos for each experimental sequence: one image taken when the atomic absorption
is present (signal), and another image taken when the atom is depumped into the
dark state (reference). We repeat the experimental sequences for a total of around
300,000 runs.

The processed images are shown in Fig. 2.17. In these images, we have already
corrected the background counts using a mean background count rate per pixel of
34.0 s−1, empirically determined from the dark region far from the probe spot. Then,
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Figure 2.17: The signal (a), reference (b), and absorption (c) images of a single 87Rb
atom probed with a weak, on-resonant coherent light, averaged over 30,000 photos.
The normalized intensities averaged over x- and y-axes are displayed alongside
the images. For better visualization and comparison, the intensity profile for the
reference image is duplicated in the other subplots as gray solid lines.
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the absorption image (Fig. 2.17(c)) is obtained by subtracting the signal image
(Fig. 2.17(a)) from the reference image (Fig. 2.17(b)). We compute the extinction of
the probe light on every pixel of the absorption image, following the expression:

1 − T = Iref − Is

Iref
. (2.12)

We observe a maximum extinction of 19.9 ± 0.4 %, in agreement with the value
measured on an APD coupled to a single-mode fiber.

We now examine the spatial profile obtained from the absorption images. Ideally,
the shadow spot area should follow the dipole scattering cross-section (3/2π)λ2,
scaled with a magnification factor (≈ 16.8) determined by the imaging system.
Similarly, the probing beam spot will have an area following the diffraction-limited
cross-section (π/2)w2, scaled with the same magnification factor. The expected 1/e2

radii for the shadow spot and the probing beam spot imaged by the camera are
7.23µm (1.1 pixels) and 9.19µm (1.4 pixels), respectively.

A Gaussian fit to the probing beam spot determines the 1/e2 beam radius to be
2.58 ± 0.03 pixels (16.8µm) in the x-direction and 2.82 ± 0.03 pixels (18.3µm) in the
y-direction. These measured values are approximately 1.9× larger than the expected
diffraction-limited beam radius. Interestingly, for the shadow spot, we are able to
observe a slightly smaller 1/e2 radius of 2.2 ± 0.1 pixels (14.3µm) in the x-direction
and 2.3 ± 0.1 pixels (15.0µm) in the y-direction. These values are consistent with
the spot size obtained from the fluorescence imaging (an exemplary image is shown
in Fig. 2.2(c)). We hypothesize that these values are already limited by the spatial
resolution of the imaging system, caused by the aberrations stemming from the
optical elements used for camera imaging. By further improving the performance
of the spatial imaging, we anticipate that this technique could allow for the direct
imaging of atomic motion [38, 95], which could provide more insights into the role
of atomic position spread in the absorption of light.
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Chapter 3

Resonance fluorescence

In this chapter, we focus on measuring the power spectrum of the atomic
fluorescence scattered by a 87Rb atom utilizing a Fabry-Perot cavity. By elevating
the intensity of the driving field into the saturation regime, the spectrum shows the
emergence of the Mollow triplet phenomenon. With an off-resonant driving field, we
confirm the presence of asymmetry in the intensity correlations between photons
originating from the two sidebands of the fluorescence spectrum.

3.1 Theoretical background
The resonance fluorescence of a two-level system is one of the fundamental

phenomena in quantum optics and has attracted great attention since the 1960s.
Experiments have been performed in various platforms (including an atomic en-
semble [96], trapped ions [97, 98], a single molecule [52], quantum dots [99–103],
and superconducting qubits [104–106]) and the theories have been capitulated in
great details in numerous textbooks [107, 108]. Here we briefly outline some key
theoretical results to facilitate discussion.

Intensity of scattered field

Let us consider the scenario where a monochromatic driving field is interacting
with a two-level atom. We will label the ground state and the excited state as
|g⟩ and |e⟩ with energies 0 and ℏω0, respectively. Conventionally, light scattered
by a two-level atom is described as having two distinct components: a coherent
component and an incoherent component. The total scattering rate Rsc can then be
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expressed as
Rsc = Rcoh +Rincoh , (3.1)

with Rcoh the scattering rate for the coherent component and Rincoh the scattering
rate for the incoherent component.

For a driving field of low intensity, the atom scatters the light mostly in a
coherent manner. Within this regime, the spectral component of this coherent
atomic fluorescence mirrors exactly the spectrum of the driving field. As the driving
intensity increases, incoherently scattered light starts to appear in the spectrum,
while the coherent component will gradually reduce. This manifests as the emergence
of a Lorentzian profile with the linewidth of the natural decay rate, and subsequently,
the appearance of sidebands in the spectrum.

Quantitatively, the transition between these two regimes is characterized by the
saturation parameter s = 2Ω2/Γ2, where Ω is the Rabi frequency for the driving field
and Γ is the natural decay rate of the two-level atom. This is shown in Fig 3.1(a).
The total scattering rate is given by the atomic population in the excited state, such
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Figure 3.1: (a) Scattering rates for an on-resonance driving field (∆ = 0) as a
function of saturation parameter s. (b) Spectral density S(ω) of the atomic emission
at different saturation parameters s. The zero reference lines for various s have been
shifted for better visualization.
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that
Rsc = Γρee = Γ Ω2

2Ω2 + 4∆2 + Γ2 , (3.2)

and the coherent scattering rate Rcoh and the incoherent scattering rate Rincoh are
given by

Rcoh = Γ|ρeg|2 = Γ Ω2(4∆2 + Γ2)
(2Ω2 + 4∆2 + Γ2)2 ,

Rincoh = Rsc −Rcoh = Γ 2Ω4

(2Ω2 + 4∆2 + Γ2)2 , (3.3)

where ρeg = Ω(2∆ + iΓ)/(2Ω2 + 4∆2 + Γ2). The expression for ρ can be obtained by
solving for the steady-state solution of the optical Bloch equation:

ρ̇ = − i

ℏ
[ρ, ĤI ] + ΓL̂σ(ρ), (3.4)

where σ = |g⟩⟨e| is the atomic lowering operator, L̂σ is the Lindblad superoperator
describing the decoherence due to spontaneous decay, and ĤI is the interaction
Hamiltonian representing the coherent interaction with the classical light field:

ĤI = ℏ
Ω
2
(
σ + σ†

)
− ℏ∆σ†σ . (3.5)

Here, Ω is the Rabi frequency (chosen to be a real number) and ∆ = ωL − ωA is the
laser detuning from the atomic transition.

Spectrum of scattered field

To evaluate the power spectrum of atomic fluorescence, we first have to look at
the first-order correlation function of the atomic scattered electric field, ⟨E(t′)E∗(t)⟩,
which is determined by the two-time atomic correlation function ⟨σ†(t)σ(t′)⟩. We
can express the power spectral density of the atomic fluorescence I(ω, r⃗) as [108]

I(ω, r⃗) = ℏω0Γ
2π

fϵ(θ, ϕ)
r2

∫
R
dτe−iωτ ⟨σ†(t)σ(t+ τ)⟩t , (3.6)

where fϵ(θ, ϕ) represents the angular emission pattern for the dipole polarization ϵ.
We can see that I(ω, r⃗) is essentially a Fourier transform of the atomic correlation
function, which is a result of the Wiener–Khinchin theorem.

In general, I(ω, r⃗) does not have a clean analytical expression. Nevertheless, we
can approximate the power spectral density with the first few leading orders of s
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and 1/(1 + s) for the two regimes where s ≪ 1 (weak driving) and s ≫ 1 (strong
driving), respectively. Adapting to the convention where we express I(ω, r⃗) =
ℏω0Γfϵ(θ, ϕ)S(ω)/(2πr2), where S(ω) is a normalized spectral density for which∫
S(ω)dω is dimensionless, we can have

S(ω) = Scoh(ω) + Sincoh(ω). (3.7)

Similar to the previous part, S(ω) can be partitioned into a coherent and an
incoherent contribution. For a weak coherent driving field s ≪ 1, we can write

Scoh(ω) = s

(1 + s)2 δ(ω − ωL), (3.8)

Sincoh(ω) = s

8π(1 + s)
Γ

(ω − ωL)2 + (Γ/2)2 , (3.9)

Here the dominant term is the Dirac delta distribution given in the coherent
contribution. For increasing s, the Lorentzian profile with a full-width half maximum
(FWHM) of Γ will become more pronounced as the s/(1 + s)2 term in the coherent
part decays faster than the s/(1 + s) part of the incoherent part (see Fig. 3.1(b)).

For a strong coherent driving field, s ≫ 1, the coherent contribution Scoh(ω) has
the same form as in Eqn. 3.8, but the incoherent contribution takes the following
form:

Sincoh(ω) = s

8π(1 + s)
Γ

(ω − ωL)2 + (Γ/2)2

+ s

32π(1 + s)2
3Γ(s− 1) + (Γ/Ω)(5s− 1)(ω − ωL + Ω)

(ω − ωL + Ω)2 + (3Γ/4)2

+ s

32π(1 + s)2
3Γ(s− 1) − (Γ/Ω)(5s− 1)(ω − ωL − Ω)

(ω − ωL − Ω)2 + (3Γ/4)2 . (3.10)

Particularly, Sincoh(ω) has a central resonant Lorentzian peak with a FWHM of Γ as
well as two side peaks ±Ω away from the resonance, with a FWHM of 3Γ/2. These
sidebands, together with the central peak, form the Mollow triplet [69].

3.2 Dressed-state representation
The spectral features can be understood intuitively by adopting the dressed-atom

description[70, 109]. We consider the total system consisting of the two-level atom
and the laser photons, subject to the Hamiltonian

H = ℏ(ωL − ∆)σ†σ + ℏωLa
†a+ ℏ

Ω
2 (σ†a+ σa†), (3.11)
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Figure 3.2: Dressed-state picture for an atom coupling to an intense driving field.
Bare states are characterized by the photon number Fock state (n) and the atom in
the ground (g) or excited (e) state. Their energy difference is ℏ∆ in the rotating
frame, where ∆ is detuning of the driving field from atomic resonance. Dressed
states are described by a pair of states with a number of total excitations N split by
ℏΩ′ where Ω′ =

√
Ω2 + ∆2 is the generalized Rabi frequency.

where each term represents the bare atom, laser photon, and atom-light interaction,
respectively. The operator a (a†) is the annihilation (creation) operator for the
photon number Fock state |n⟩ from the driving field. By diagonalizing H, the
new eigenstates are a superposition of the bare states |g, n+ 1⟩ and |e, n⟩ (see
Fig. 3.2). In every manifold where the total number of excitations N is the same,
the eigenstates are split by the generalized Rabi frequency Ω′ =

√
Ω2 + ∆2. We will

focus on the case for on-resonance excitation ∆ = 0, which gives Ω′ = Ω.
The three peaks in the fluorescence spectrum can be understood as the sponta-

neous decay process from the manifold of N total excitations to the manifold with
(N − 1) excitations. Notably, four optical transitions are possible in this process.
Two of them are degenerate (green decays in Fig. 3.2) and correspond to the central
peak in the fluorescence spectrum, while the sidebands ±ℏΩ away from the central
peak originate from the other two transitions (red and blue decays in Fig. 3.2). This
leads to the weighting of 1 : 2 : 1 in the total spectral intensities of the incoherent
peaks under resonant excitation. Note that this picture is most useful when Ω ≫ Γ
where the dressed states are spectrally resolved.
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Figure 3.3: Optical setup for collecting atomic fluorescence from a single atom in free
space. One avalanche photodetector (APD1) is used to monitor the atomic fluores-
cence and acts as a trigger to start the experimental sequence. (a) A Fabry-Perot cav-
ity resolves the frequency spectrum of the atomic fluorescence. (b) Hanbury-Brown
and Twiss (HBT) configuration to measure second-order intensity autocorrelation.

3.3 On-resonant excitation

3.3.1 Experimental implementation

The schematic diagram of the experimental setup and the experimental sequence
are described in Fig. 3.3 and Fig. 3.4, respectively. Once a single 87Rb atom is
trapped in the FORT, we apply PGC for 10 ms to reduce the atomic motion to
a temperature of around 13µK (as described in Section 2.4), corresponding to a
Doppler broadening of approximately 110 kHz. A bias magnetic field of 1.44 mT is
then applied along the FORT laser propagation direction to remove the degeneracy
of the Zeeman states, followed by an optical pumping step that prepares the atom
in the |F = 2,mF = −2⟩ Zeeman sublevel. Next, we turn on the σ− polarized
on-resonant probe laser beam along the optical axis for 2µs. This pulse length is
chosen to maximize the duty cycle of photon collection while avoiding excessive
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Figure 3.4: Experimental sequence for probing the Mollow triplet. The probe driving
field is applied for 2µs, during which the atomic fluorescence is collected.
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Figure 3.5: (a) Resonant saturation measurement, with the blue solid line repre-
senting the fit to the saturation curve ηΓ

2
Pprobe

Pprobe+Psat
, where Pprobe is the incident

probe power, Psat is the saturation power, and η is the total detection efficiency. (b)
Cavity transmission of the probe laser to characterize the cavity linewidth. The
solid line represents a fit to Lorentzian function γ2

c /(γ2
c + 4∆2), where γc is the cavity

linewidth.
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recoil heating of the atom (refer to Chapter 3.3.2 for more discussions). During the
probing period, we collect photons scattered backward through the same lens into a
single-mode fiber-coupled APD, avoiding the strong light levels of the probe laser
for analysis. The photon scattering rate is first characterized for different intensity
levels of the probe field, as illustrated in Fig 3.5(a). From the fit, we deduce that the
atomic scattering saturates at a probe power of 6.3 ± 0.2 pW, and the total detection
efficiency is around η = 1.79 ± 0.02 %.

After we establish a better understanding of the saturation parameter s for
the probe field, we employ a Fabry-Perot cavity to frequency-filter the collected
fluorescence photons, as shown in Fig. 3.3(a). By scanning the cavity resonance
frequency, the frequency spectrum of the fluorescence can be obtained from the
transmission count rates. To precisely control the resonance frequency of this cavity,
it is locked to a tunable sideband generated by an electro-optical modulator (EOM)
from our 795-nm laser locked to the D1 transition line of a 87Rb atom. The linewidth
of the cavity is characterized to be γc/2π = 3.92 ± 0.05 MHz with an external cavity
diode laser (see Fig 3.5(b)). This value will be used for deconvolution of the atomic
spectrum in the following sections.

3.3.2 Atom loss due to heating

At the early stage of the experiment, we encountered difficulties in reaching the
saturation regime due to underestimation of the heating effect. In the following, we
discuss the two mechanisms that are responsible for this issue.

Reduced trap depth due to atomic state

For increasing the Rabi frequency of the driving field Ω, the population for the
excited state also increases accordingly. However, since the FORT does not behave
as an attractive potential in the excited state, the trapping force experienced by the
atom will decrease for a larger Ω.

As the atomic state will undergo Rabi oscillation and vary in time, the trapping
potential will also be changing as a function of time. For large saturation parameters
(s ≫ 1), the Rabi frequency of more than tens of MHz is much higher than the trap
frequency of the FORT. Therefore, the atomic motion is not able to respond as fast
as the oscillation of the atomic state. Consequently, the effective potential as seen
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by the center-of-mass motion will be given by the steady-state population of the
atom. This is illustrated in Fig. 3.6(a).

Accounting for the repulsive AC Stark shift of the excited state, the average light
shift experienced in the atomic steady state is approximately 36.6 % of the original
trap depth Ug, which in our case is around kB × 0.32 mK.

Recoil heating

We treat the motion of the atom classically and consider the change in the atomic
momentum due to a ballistic collision with a probe photon. Every scattering event
is treated as an absorption of the probe photon in the +z direction, followed by a
spontaneous decay that obeys the dipole emission pattern. Assuming a Maxwell-
Boltzmann distribution, the probability distribution for the atomic momentum
P (px, py, pz) can then be expressed as

P (px, py, pz) ∝ exp
(

−
p2

x + p2
y

2mkBT0 + 0.3Nℏ2k2 − (pz −Nℏk)2

2mkBT0 + 0.4Nℏ2k2

)
, (3.12)

where N is the number of scattering events, ℏk the momentum of 780-nm photon,
m the mass of a 87Rb atom, kB the Boltzmann constant, and T0 is the initial atomic
temperature. Notably, the mean value for pz follows Nℏk as the probe beam pushes
the atom in the same +z direction constantly. Also, the variance for px, py, and
pz increases linearly with Nℏ2k2, with different coefficients. This is because the
dipole scattering pattern is anisotropic. For a circularly polarized dipole, the angular
emission profile follows (3/8π)(1 − (sin2 θ)/2) [110], where θ is the polar angle in
the spherical coordinate.

With this expression, we can evaluate the probability of an atom possessing
kinetic energy Ek = (p2

x +p2
y +p2

z)/2m > U0 numerically, as shown in Fig. 3.6(b). For
an atom in the trapping potential of kB × 0.86 mK (kB × 0.32 mK), it takes about 70
(45) scattering events for the atom to gain a kinetic energy comparable to U0. With
a strong driving field that is far in the saturation regime (s ≫ 1), we can assume the
scattering rate is approximately Γ/2. This allows us to establish the characteristic
heating time τheat = 2

√
U0/(Γ2Er), which corresponds to a probing duration of 3.7µs

(2.4µs) for U0/kB = 0.86 mK (0.32 mK). Therefore, in the experiment, we choose a
probing period of 2µs, which is shorter than τheat to avoid excessive recoil heating
of the atom.
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Figure 3.6: (a) Schematic diagram for the trapping profile for different atomic levels.
(b) Numerical result of the probability for an atom to remain Ek < U0 after photon
scatterings.

3.3.3 Discussion

Measured spectrum of the atomic fluorescence

We record the frequency spectra for increasing excitation powers, as shown in
Fig. 3.7. Here, we normalize the spectra with the maximum peak intensity for better
visualization. At weak excitation, the FWHM of the single peak in Fig. 3.7(a) is
2.5(3) MHz after deconvolution from the cavity contribution. The deconvolution
is performed numerically by convoluting the cavity transfer function γ2

c/(γ2
c + 4ω2)

with the fit equations S(ω) described in Eqn. 3.8, 3.9, and 3.10. The observation
is in agreement with the premise that the coherent scattering component with a
linewidth smaller than Γ dominates the spectrum for a driving power that is well
below saturation.

As the power increases, the three-peak structure emerges and the splitting
between the peaks also increases. After excluding cavity contribution, the central
peak in Figs. 3.7(d) and (e) have a FWHM of around 8 MHz extracted from the fit.
This value is close to the atomic natural linewidth of 87Rb, thus justifying the claim
that an optically trapped single atom can be laser cooled to mitigate the Doppler
broadening effect.

As discussed in the theoretical section, we expect the height ratio between the
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Figure 3.7: Normalized resonance atomic emission spectra at different excitation
intensities recorded by scanning the Fabry-Perot cavity. The solid line is a fit to
S(ω) convoluted with the cavity transfer function and the effect of laser reflection.
The Rabi frequency extracted from the fit is labeled in the respective subplots.
Error bars represent the standard error of the mean determined from around 20,000
repeated experimental sequences.
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central peak and the sidebands to be around 1 : 3 : 1 according to Eqn. 3.10 as
the sidebands have a larger width compared to the central peak. Accounting for
the linewidth of the filtering cavity, the height of the central peak should decrease
such that the ratio reaches around 1 : 2.6 : 1. However, the measured spectra
show central peaks with about 3.7 times the height of sidebands, averaged over
Figs. 3.7(c) to (e). This inconsistency between the theoretical prediction and the
experimental data can be likely attributed to the reflection and scattering of the
probe laser from the optics. By introducing this laser component in our model, we
deduced a contribution of 0.9 %, 2.4 %, and 4.5 % of the total power in the spectra
in Figs. 3.7(c) to (e), respectively.

Second-order correlation

Next, we are interested to see if the Mollow splitting measured is consistent with
the Rabi frequency driving the two-level system. In this part of the experiment,
we replace the Fabry-Perot cavity with a fiber beam splitter and two APDs in a
Hanbury-Brown and Twiss configuration as shown in Fig. 3.3(b) to perform an
intensity correlation measurement. We refer to the arrival times of the fluorescence
photons on the two APDs as t1 and t2, respectively. The differences of detection
times τ = t2 − t1 of a pair of photodetection events are then recorded on a time-
tagging device for the construction of a histogram for τ . Given that τ is smaller
than the reciprocal of the mean photodetection rate, we can assume the intensity at
time t follows I(t) ≈ P(t)/∆t, where P(t) is the probability of detecting a photon
for the time bin t and ∆t is the time bin width. Therefore, the second-order
intensity correlation function g(2)(τ) of the atomic fluorescence can be inferred from
⟨P(t2 = t1 + τ |t1)⟩t1 .

This correlation function can reveal some characteristics of the photons emitted
by a single atom such as photon antibunching at τ = 0 and Rabi flopping dynamics
for |τ | < 1/Γ. For driving fields of low intensity, g(2)(τ) shows a monotonic increase
to unity as τ increases from zero to much larger than 1/Γ. When the driving field
intensity increases above saturation, g(2)(τ) resembles the case for weak excitations
at a large delay, but oscillations corresponding to the Rabi frequency appear around
zero delays. Upon detection of the first fluorescence photon, the atom is projected
onto the ground state and the probability of detecting the subsequent photon at
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some later time τ is proportional to the excited state population of the atom. This
correlation function for fluorescence from a single atom can be expressed as [111]

g(2)(τ) = 1 − e−(3Γ/4)|τ |
(

cos (Ωτ) + 3Γ
4Ω sin Ω|τ |

)
. (3.13)

As shown in Fig. 3.8, we record a series of second-order intensity correlation
measurements for the same excitation power used in spectrum measurement. The
correlation measurements are fitted to Eqn. 3.13, multiplied with a triangle function
that results from a convolution of two square pulses of the same length. This is
done to account for the fluorescence from each detector being collected during a
2-µs-wide time window. In fact, the time window effect will result in a 4-µs-wide
triangular envelope being applied to the correlation measurement. We can deduce
the corresponding Rabi frequencies from the fit so that these measurements can
serve as an alternative approach allowing comparison to the values obtained from
the Mollow triplet spectral measurement. The extracted values, labeled in Fig. 3.8
for increasing driving powers, are in good agreement with the values of Ω obtained
from the Mollow triplet spectra.

3.4 Off-resonant excitation
While the atom is excited resonantly, the emission of the sideband photons does

not have a preferred order. As such, the cross-correlation between photons from
different sidebands is symmetric with respect to zero time delay τ = 0. However, if
the excitation field is detuned from the atomic resonance, this symmetry is broken
as the emission process of the sideband photons now has a preferred order [70, 112,
113]. The preferred order of the emission depends on the sign of the detuning and
manifests as an asymmetry in the correlation measurement around τ = 0.

3.4.1 Correlation between two sideband photons

In this part of the experiment, we red-detuned the excitation laser by 30 MHz
from the atomic resonance. As shown in Fig. 3.9, there is a Fabry-Perot cavity in
front of each APD to filter the incoming fluorescence such that photon correlation
between chosen spectral components can be measured. To better transmit the
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Figure 3.8: Second-order correlation function of the single atom for increasing
excitation intensities. The solid line is a fit to Eqn. 3.13 accounting for a triangle
function resulting from the convolution of two square pulses. The Rabi frequency
shown for each spectrum is deduced from the respective fit.
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photons from different peaks, we replace the cavities used in this experiment to have
a linewidth of 20 MHz.

The spectrum of the fluorescence is slightly different when the atom is excited
off-resonantly, with the central peak sitting at the driving frequency and the sideband
separated from the central peak by the generalized Rabi frequency Ω′ =

√
Ω2 + ∆2,

where ∆ is the detuning of the laser from atomic resonance. The power ratio between
the central peak and the sidebands deviates from the on-resonance case, with the
central peak being suppressed as detuning increases. To align the cavity resonance
with the respective sidebands, we first measure the second-order correlation of the
off-resonance fluorescence. The data are shown in the inset of Fig. 3.10 and the blue

Figure 3.9: Optical setup for collecting atomic fluorescence from a single atom in
free space for g(2) measurements, similar to the previous part. (a) Cross-correlation
measurement setup with a cavity in each arm before APD2 and APD3 to select
photons from a specific frequency window. (b) Cross-correlation measurement setup
with only one filtering cavity in one of the two arms.
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Figure 3.10: Normalized cross-correlation between photons from two opposite Mollow
sidebands as a function of delay τ between detection of a blue sideband photon
after detecting a red sideband photon. Inset: Normalized intensity autocorrelation
of the unfiltered off-resonance atomic fluorescence to extract the generalized Rabi
frequency Ω′.

solid line is the fit to extract Ω′, which is 2π× 42 ± 1 MHz in this case. As such, the
cavity resonance is locked at ±Ω′ away from the driving frequency to isolate the
sideband photon.

Figure 3.10 shows the cross-correlation measurement between the opposite Mollow
sidebands where we use a photon from the lower-energy sideband as the “start” trigger
and the photon from the other sideband as the “stop” signal. The measurement
shows a clear bunching behavior around τ = 0. We normalize the correlation function
with respect to coincidence counts from a time window that is far from τ = 0. With
this, we obtain a bunching value of 8.1 ± 0.8. Applying Eqn. (40) from reference [70],
the theoretically predicted bunching value is approximately 11 for the parameters in
our experiment. The discrepancy to our observed value of 8.1 could be attributed
to the imperfect spectral filtering. With the separation of 42 ± 1 MHz, cavities with
a linewidth of 20 MHz cannot suppress the photons from the central peak and the
opposite sideband entirely. Therefore, there are some correlation contributions from
different combinations of photons in our experiment, for example, between photons
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(a) (b)

Figure 3.11: Two possible multiphoton scattering processes. (a) Emission of a
red sideband photon followed by a blue sideband photon. (b) Emission of a blue
sideband photon followed by a red sideband photon. Scattering process (b) is less
likely to occur because it involves more virtual levels.

from the central peak and photons from two sidebands. These would reduce the
expected bunching value.

Asymmetrical temporal correlation

By performing fits to exponential functions on the rising and decaying edges of
the normalized correlation, we obtain time constants of τrise = 7.8 ± 0.9 ns and τfall

= 30 ± 2 ns, respectively. As a comparison, the corresponding theoretical prediction
following the model in [70] for τrise and τfall are 7.96 ns and 35.02 ns. The asymmetry
of the correlation function indicates that the emission of the sideband photons has a
preferred time order for off-resonant excitation, in this case first an emission from
the lower-energy sideband, followed by a second emission from the higher-energy
sideband.

To explain this observation, one can look at multiphoton scattering processes [112]
involving the absorption of two laser photons and the emission of two fluorescence
photons having frequencies ωL ± Ω′, as illustrated in Fig. 3.11. In Fig 3.11(a),
we can see that there is an intermediate resonance when the atom arrives at the
excited state |e⟩ after the absorption of the second laser photon. Here, the ordering
is important because the emission process in the reverse order (see Fig. 3.11(b))
involves an additional virtual state to occur. Hence, the reverse process proceeds at
a much smaller rate.

The dressed-state picture also offers an alternative explanation for the correlation
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Figure 3.12: Dressed-state picture for an atom coupling to an off-resonant driving
field. Bare states are characterized by the photon number Fock state (n) and the
atom in the ground (g) or excited (e) state. Their energy difference is ℏ∆ in the
rotating frame, where ∆ is the detuning of the driving field from atomic resonance.
Dressed states are described by a pair of states with a number of total excitations
N split by ℏΩ′ where Ω′ =

√
Ω2 + ∆2 is the generalized Rabi frequency.

asymmetry. In contrast to the on-resonance scenario, the new eigenstates accounting
for the off-resonant driving do not have the same population distribution in the
excited state | ⟨e, n|1(N)⟩ |2 and | ⟨e, n|2(N)⟩ |2. This leads to significantly distinct
energy widths for the eigenstates, as highlighted in Fig. 3.12. Thanks to the
frequency selectivity of optical cavities, we can restrict ourselves to only look at
the emissions of the two sideband photons ωL ± Ω′ ≈ ωL ± ∆ for large detuning
∆ ≫ Ω. The eigenstate |1(N)⟩ then consists mostly of the excited state |e, n⟩ and
the eigenstate |2(N)⟩ consists mostly of the ground state |g, n+ 1⟩. As such, the
energy width of |1(N)⟩ will be much closer to Γ, and hence much larger than the
energy width of |2(N)⟩. Now we consider a two-photon detection scheme, where the
transition |1(N)⟩ → |2(N − 1)⟩ emits a blue sideband photon while the transition
|2(N)⟩ → |1(N − 1)⟩ emits a red sideband photon. The detection of a red sideband
photon as a trigger implies that the atom is now projected to the |1(N)⟩ state. Since
the state |1(N)⟩ has a large energy width, from the uncertainty principle we expect
that the radiative decay occurs very quickly, leading to the high coincidence rate
of observing a blue sideband photon after a red sideband photon. On the other
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Figure 3.13: Normalized cross-correlation between photon projected to the Mollow
sideband and unfiltered photon as a function of delay τ , with τ = tunfiltered − tsideband.
(a) Red Mollow sideband ωL − Ω′ is transmitted. (b) Blue Mollow sideband ωL + Ω′

is transmitted.

hand, the detection of a blue sideband photon as a trigger implies that the atom
is now projected to the |2(N)⟩ state. It is very unlikely to record a red sideband
photon within 1/Γ as the state |2(N)⟩ has a much narrower energy width and thus
corresponds to a smaller decay rate.

3.4.2 Correlation with single-sided filtering

As a supplementary measurement, we also look at the cross-correlation between
a filtered sideband photon and the unfiltered arm (see Fig. 3.9(b)). For this
measurement, the excitation light is red-detuned by 46 MHz relative to the atomic
transition, and the filtering cavity employed has a slightly broader FWHM of
γc/2π = 38 MHz. The cavity resonance is set to be centered at either the red
sideband or the blue sideband of the fluorescence spectrum. Next, we use the photon
transmitted through the cavity (sideband photon) as the “start” trigger and the
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unfiltered photon as the “stop” signal.
The result is shown in Fig. 3.13, where the subplot (a) takes the red sideband

photon as the trigger, and (b) takes the blue sideband photon as the trigger. We
observe that the temporal asymmetry is still very pronounced, such that in (a)
most pair detections occur after the red sideband photon, and in (b) most pair
detections occur before the blue sideband photon. The ordering, governed by the
sign of the detuning, is also in agreement with the measurements in the previous
part. In particular, we observe an oscillatory feature (with a period of 1/Ω′) in
both subplots that do not exist in the cross-correlation between opposite Mollow
sideband photons. The oscillatory feature is due to the interference with the photons
generated from the Mollow central peak, which was filtered out by the optical cavities
previously. Since the Mollow central peak can arise from the |1(N)⟩ → |1(N − 1)⟩
and |2(N)⟩ → |2(N − 1)⟩ transitions, it does not exhibit a preferable time ordering
relative to the sideband photons. Consequently, this results in oscillations occurring
for both τ < 0 and τ > 0.

3.5 Summary
In this experiment, we measured the frequency spectra of the resonance fluores-

cence of an optically trapped atom at different excitation intensities. The signature
Mollow triplet was observed and compared to the theoretical model. The measure-
ment results agree well with the theoretical prediction after taking into account the
effect of the cavity transfer function and laser reflections. We then compare the
Rabi frequencies obtained from the spacing between Mollow sidebands with the
second-order correlation function of the atomic fluorescence g(2)(τ). The extracted
Rabi frequencies from g(2)(τ) are also consistent with the Mollow spectra. In a dif-
ferent setting, we confirm that the photons from opposite sidebands have a preferred
order of emission which is reflected in the asymmetry of the temporal correlation
function with an off-resonant excitation. Such a preferred time ordering of the
emitted photons from opposite sidebands could be used in a heralded narrowband
single-photon source that can find potential applications in quantum networks using
atoms or atom-like systems as stationary nodes.
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Chapter 4

Ground state coherence

In this chapter, we demonstrate the preparation and measurement of the coher-
ence between the Zeeman sublevels |F = 2,mF = −2⟩ and |F = 1,mF = −1⟩ in the
52S1/2 manifold of a single 87Rb atom. This is accomplished using an on-resonant
microwave field that couples the two Zeeman sublevels via a magnetic dipole transi-
tion. By implementing various dynamical decoupling schemes in our atomic qubit
system, we manage to extend the qubit coherence time to approximately 7 ms, which
can be useful for the high-fidelity transfer of quantum states between stationary
atomic qubits separated by long distances [114].

4.1 Motivation
For future quantum information applications such as a distributed quantum net-

work, entanglement between material qubits and photons is crucial to function as the
interface between atomic quantum memories and photonic quantum communication
channels, allowing for the distribution of quantum information over long distances.
To achieve this objective, multiple proposals have been put forward [114–117]. In
particular, we will focus here on one such scheme [118] that is suitable for the
generation of time-bin atom–photon entanglement and the sequential generation
of an entangled photonic string, such as the Greenberger–Horne–Zeilinger (GHZ)
state [119].

The proposed scheme relies on a relatively simple two-level system (|↑⟩ and |↓⟩)
with one of the energy eigenstate coupled to a cycling optical transition (|↑⟩ ↔ |e⟩)
to facilitate state readout and entangled photon generation, as shown in Fig. 4.1(a).
The experimental sequence is described as follows:
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Figure 4.1: (a) Energy level scheme described in [118] to create atom-photon and
photon-photon entanglement. (b) Experimental sequence described in the proposal.
The two-level system is prepared in the superposition state (|↑⟩ + |↓⟩)/

√
2 before

being driven by an excitation pulse that couples |↑⟩ and |e⟩ states to generate a
photon in time-bin t0 conditional on the qubit state. After a rotation in the qubit
state, the same excitation pulse drives the system to generate another photon in
time-bin t1 conditional on the qubit state. Ideally, the atomic qubit and the photonic
time-bin qubit can be represented as a Bell state.

1. Initialize the qubit in the superposition state 1√
2(|↑⟩ + |↓⟩).

2. Resonantly drive the optical transition with a π-pulse to generate a photon in
the first time-bin (t0) conditional on the atom being in the |↑⟩ state, yielding

1√
2(|↑, 1t0⟩ + |↓, 0t0⟩).

3. Flip the qubit to have 1√
2(|↓, 1t0⟩ + |↑, 0t0⟩).

4. Resonantly drive the optical transition with a π-pulse to generate a photon
in the second time-bin (t1) conditional on the atom being in the |↑⟩ state,
yielding 1√

2(|↓, 1t0 , 0t1⟩ + |↑, 0t0 , 1t1⟩).

5. Flip the qubit again to have 1√
2(|↑, 1t0 , 0t1⟩ + |↓, 0t0 , 1t1⟩).

6. Repeat steps (2) to (5) to build up the desired photonic state. By rewrit-
ing the photonic qubit in the basis of odd (|0′⟩, following |0′

kl⟩ = |1tk
, 0tl

⟩)
and even-numbered time-bins (|1′⟩, following |1′

kl⟩ = |0tk
, 1tl

⟩), we can have
1√
2(|↑, 0′

01, 0′
23, 0′

45⟩ + |↓, 1′
01, 1′

23, 1′
45⟩) after three iterations.

A schematic diagram for the procedure is also shown in Fig. 4.1(b). By projecting
the qubit system to the state |+⟩ = (|↑⟩+|↓⟩)/

√
2 at the end of the photon generation

process, we can create the three-photon GHZ state (|0′
01, 0′

23, 0′
45⟩+ |1′

01, 1′
23, 1′

45⟩)/
√

2.

57



CHAPTER 4. GROUND STATE COHERENCE

The scheme above assumes the single photon emission from the atom into a
single optical mode, which is not really the case in the free space. Particularly,
the free-space atom-light interface will have a finite coupling efficiency. Therefore,
the generation of an entangled state between atoms and photons typically requires
additional post-processing conditioning on the detection of the generated photons,
which results in longer experimental runtime.

The quantum states required for this relatively simple scheme can actually be
mapped to the energy levels of a 87Rb atom. For instance, the cycling optical
transition used in the previous chapter (52S1/2, F = 2, mF = −2 ↔ 52P3/2, F

′ =
3, mF ′ = −3) can be exploited for the generation of entangled photons. Conse-
quently, we can use the Zeeman sublevels in the 52S1/2 ground state manifold,
|↑⟩ ≡ |F = 2,mF = −2⟩ and |↓⟩ ≡ |F = 1,mF = −1⟩ as the qubit basis. In the
subsequent sections of this chapter, we will experimentally study the coherent
manipulation of these two Zeeman sublevels.

4.2 Rabi flopping
We consider the two-level system formed by the two Zeeman sublevels in the

52S1/2 ground state manifold, with an energy spacing given by the hyperfine splitting
of approximately h× 6.83 GHz. We use an on-resonant microwave field to probe this
transition between two hyperfine levels. Since there is no change in the azimuthal
quantum number L, it is an electric dipole forbidden. As such, the coupling between
|↑⟩ and |↓⟩ is in fact induced by a magnetic dipole in the microwave domain.

This transition can be described by the Breit-Rabi Hamiltonian Ĥµ = µBB(t) ·
(gJ Ĵ+gI Î) [120], where µB is the Bohr magneton, gJ (gI) the fine structure (nuclear)
g-factor, Ĵ (̂I) the operator for total electron angular momentum (total nuclear
angular momentum), and B(t) is the magnetic driving field. Since gI ≪ gJ , the
Hamiltonian term is often simplified to contain only the Ĵ contribution. Restricting
the Hilbert space to contain only |↑⟩ and |↓⟩, we can finally write the interaction
Hamiltonian for a two-level system under rotating wave approximation:

Ĥ = −ℏ∆ |↑⟩⟨↑| + ℏ
Ω
2 (|↑⟩⟨↓| + |↓⟩⟨↑|), (4.1)

where ∆ = ωµ − ωHFS the detuning of microwave frequency from the hyperfine
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Figure 4.2: Schematic diagram for the generation of a microwave signal at approxi-
mately 6.8 GHz to resonantly drive the transition between |F = 2,mF = −2⟩ and
|F = 1,mF = −1⟩.

splitting and Ω = −
√

3µBB0/(
√

4ℏ) is the Rabi frequency corresponding to the
magnetic field strength B0, calculated from the related transition matrix. From the
radiative power of an electromagnetic wave P = AcB2

0/(2µ0), where A represents
the cross-section of irradiation, c the speed of light, and µ0 the vacuum permeability,
we can estimate that a Rabi frequency of Ω = 2π × 50 kHz necessitates an input
power P of approximately 1.9 W for A = (3/2π)λ2 ≈ 9.9 cm2.

By solving the Hamiltonian in Eqn. 4.1, we can write the probability of finding
the atom in state |↑⟩ as

P↑(t) = 1 − Ω2

Ω2 + ∆2 sin2
(√

Ω2 + ∆2

2 t

)
, (4.2)

assuming the atom is prepared in the |↑⟩ state at t = 0. At resonance (∆ = 0), the
atom can deterministically go from |↑⟩ to |↓⟩ with a pulse duration of t = π/Ω. This
is called a π pulse. On the other hand, with a pulse duration of t = π/(2Ω), we can
drive |↑⟩ to a superposition state (|↑⟩ + i |↓⟩)/

√
2. This is called a π/2 pulse.

Microwave system

A simplified circuit diagram for the generation of microwave signal is shown in
Fig. 4.2. We start with a homemade direct digital synthesizer (DDS) that allows
for simple interfacing with the pattern generator that controls the experimental
sequences to do frequency, amplitude, and phase modulations. From this DDS
output frequency of around 200 MHz, we employ frequency multipliers followed by
bandpass filters to derive a signal of 800 MHz. Then, a mixer combines the DDS
signal and the output of a commercial radiofrequency signal generator (Stanford
Research Systems SG386) of 2.6 GHz. The combined output results in a signal with
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a frequency of 3.4 GHz, after filtering out the unwanted harmonics using a high-pass
filter. Finally, a frequency doubler is used to increase the frequency to 6.8 GHz
to match the hyperfine splitting of 87Rb. The amplified output of approximately
+32 dBm is then fed to a log periodic printed circuit board antenna to irradiate the
single atom system.

4.2.1 Implementation

Figure 4.3 shows the optical setup to observe the Rabi oscillation in the ground
state. Upon trapping and cooling down the single atom, a bias magnetic field of
14.4 G is applied to define the quantization axis for the Zeeman sublevels. Following
the state preparation scheme in Chapter 2.5.2, the atom is optically pumped in
the |↑⟩ state. We then resonantly drive the microwave transition |↑⟩ ↔ |↓⟩ with a
varying pulse duration, followed by a fluorescence-based state detection scheme (see
Chapter 2.5.1) to measure the atomic state population. The experimental sequence
is depicted in Fig. 4.4.

The Rabi oscillation in Fig. 4.5 exhibits a Rabi frequency of Ω = 2π × (76.78 ±
0.03) kHz, with a visibility of 0.837 ± 0.007. Assuming there is no other source
of error, the maximum visibility is bounded by the state detection fidelity F (see

(a) (b)

Figure 4.3: (a) Energy level scheme. The solid blue line represents the microwave tran-
sition of interest that couples the |F = 2,mF = −2⟩ ≡ |↑⟩ and |F = 1,mF = −1⟩ ≡
|↓⟩. The |↑⟩ state can be coupled to 52P3/2 |F = 3,mF ′ = −3⟩ ≡ |e⟩ via a cycling
optical transition (red arrow). The dashed blue line represents another microwave
transition (more description in Chapter 4.4) used as a reference for qubit coherence
time. (b) Schematic for probing the coherence of the Zeeman qubit states. UHV:
ultrahigh vacuum chamber, IF: interference filter centered at 780 nm, λ/4: quarter-
wave plate, PBS: polarizing beam splitter, BS: beam splitter, B: magnetic field.
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Figure 4.4: Experimental sequence for driving a microwave transition between two
ground state Zeeman levels. The qubit system undergoes Rabi oscillations while a
resonant microwave field is applied for a pulse duration between 0 and 60µs.
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Figure 4.5: Rabi oscillation between |↑⟩ and |↓⟩. The solid line is a fit to an
exponentially decaying cosine function to extract the Rabi frequency, Ω/(2π) =
76.78 ± 0.03 kHz. Error bars represent the standard error of binomial statistics
accumulated from around 1500 repeated sequences.
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Eqn. 2.11) following 1 − 2(1 − F ) = 0.948 ± 0.004. The Rabi oscillation shows
little decay within the first 60µs, implying that the reduced visibility is most likely
due to imperfections in the state preparation process. Particularly, if the atom is
initialized in other Zeeman states, it does not couple to the microwave field since
the corresponding microwave detuning ∆/(2π) is at least 10 MHz, which is much
larger than the Rabi frequency Ω. From the detection fidelity, we deduce that the
population of the atom prepared in |↑⟩ state is 88.3 ± 0.08 %.

4.3 Ramsey experiment

4.3.1 Implementation

In this part, we characterize the dephasing time for the superposition state
|+⟩ = (|↑⟩ + i |↓⟩)/

√
2. Typically, this decay in coherence is not exponential [121]

but it follows
w(τ) = |1 + 0.95( τ

T ∗
2

)2|−3/2 cos (∆τ) , (4.3)

where ∆ is the detuning of the driving field and T ∗
2 is the 1/e dephasing time. The

damped profile of w(τ) is in fact the result of the Fourier transform of the atomic
energy distribution (refer to Section 4.3.2 for more discussions on the dephasing
mechanism).

The experimental sequence is depicted in Fig. 4.6. After preparing the atom in
the |↑⟩ state, we apply a π/2 pulse to bring the atom to the |+⟩ superposition state.
The qubit system then undergoes a free evolution for a period τ in the dipole trap.
Finally, a 3π/2 pulse brings the atom back to the |↑⟩ state for a state measurement.
We repeat the experiment for different τ and fit w(τ) in Eqn. 4.3 to the Ramsey
contrast, which results in a dephasing time of T ∗

2 = 63 ± 5µs, as shown in Fig. 4.7.
The oscillatory feature is mostly due to a small detuning between the microwave
field and the hyperfine transition (estimated to be 4.3 ± 0.2 kHz from the fit).

Particularly, we observe that the Rabi flopping measurement in Fig. 4.5 shows
a longer coherence time than in the Ramsey experiment. This is because in the
presence of a driving field, the continuously rotating Bloch vector effectively averages
out the dephasing mechanism. This phenomenon is also known as “spin locking” in
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Figure 4.6: Experimental sequence for probing the coherence of the superposition
state |+⟩ = (|↑⟩+ i |↓⟩)/

√
2 using a Ramsey measurement. A π/2 pulse first prepares

the qubit in the |+⟩ state. The qubit system then undergoes a free evolution for a
period τ in the dipole trap. Finally, a 3π/2 pulse brings the qubit back to the |↑⟩
state for a state measurement.

the field of quantum control [122].
In the context of nuclear magnetic resonance (NMR), T ∗

2 refers to the inho-
mogeneous dephasing time constant which generally describes how a collection of
nuclear spins gets out of phase with each other due to spatial inhomogeneity of the
driving field [123]. Here we have only one single qubit, we are not able to perform
an ensemble average to extract T ∗

2 . Instead, we measure the dephasing rate by
averaging over repeated measurements, which is similar to observing an ensemble of
many independent atoms. We will discuss several possible dephasing mechanisms in
the following parts.

4.3.2 Dephasing mechanisms

We consider an optically trapped two-level atom prepared in the superposition
state |+⟩ = (|↑⟩ + i |↓⟩)/

√
2. Due to the thermal motion of the atom, in each

realization of the experiment, the single atom will be located at a random position
in the FORT and will therefore be subject to a different light shift. In particular, if
the light shifts experienced by the two qubit states are not the same, this in turn will
accumulate a relative phase between the two qubit states, leading to a dephasing
process.
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Figure 4.7: Ramsey measurement between the two Zeeman sublevels. From the fit,
we extract the characteristic 1/e time constant T ∗

2 = 63 ± 5µs. The oscillatory
feature is mostly due to a small detuning between the microwave field and the
hyperfine transition. Error bars represent the standard error of binomial statistics
accumulated from around 1000 repeated sequences.

We suppose for a trap potential of U , the light shift experienced by the |↑⟩ and
|↓⟩ states are U and (1 + η)U , respectively. Here, η is a dimensionless scaling factor
representing the difference in light shifts of the two Zeeman states. After a time
interval of t, the superposition state will become

|ψ(t)⟩ = 1√
2

(
|↑⟩ + i exp [−iη

ℏ

∫ t

0
U(τ)dτ ] |↓⟩

)
≡ 1√

2
(|↑⟩ + i exp [−iΦ(t)] |↓⟩) , (4.4)

for U = m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2)/2 for the atom located near the bottom of the
FORT, ω⃗ = (ωx, ωy, ωz) are the trap frequencies in three directions. Treating the
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motion of the atom classically, the trajectory of the atom is then given by

r⃗(t) =


x(t)
y(t)
z(t)

 =


x0 cosωxt+ (vx0/ωx) sinωxt

y0 cosωyt+ (vy0/ωy) sinωyt

z0 cosωzt+ (vz0/ωz) sinωzt

 , (4.5)

where (x0, y0, z0) is the initial position and (vx0, vy0, vz0) the initial velocity. As the
initial conditions are random in every experimental run, the statistical ensemble
of the output state can then be evaluated by averaging the state |ψ(t)⟩ over the
Boltzmann-distributed initial conditions p(ri) ∼ exp (−mω2

i r
2
i /2kBT ) and p(vi) ∼

exp (−mv2
i /2kBT ) for i = x, y, z:

ρ̂(t) = E [|ψ(t)⟩⟨ψ(t)|]r⃗0,v⃗0

=
∫
d3r⃗0 d

3v⃗0 p(r⃗0, v⃗0) |ψ(t)⟩⟨ψ(t)| , (4.6)

where E[·] denotes the expectation value obtained from averaging over the initial
conditions.

In general, the integral for the accumulated relative phase Φ(t) can be quite
computationally tedious. One way to simplify this is to consider the atom is static
within one experimental run [124], then the light shift experienced by the qubit will
no longer have a dependence on time, U(τ) = U(r⃗0). This assumption represents
the worst-case scenario since any time-varying U(τ) will always oscillate back to
0, leading to a smaller dephasing compared to the constant field assumption. To
take this oscillatory behavior into account, a factor of 1/2 can be incorporated into
the accumulated phase Φ(t) = ηU(r⃗0)t/2ℏ. Now, we can represent the statistical
averaging with just one random variable U(r⃗0) (which is equivalent to a coordinate
transformation from r⃗0):

ρ̂(t) =
∫ ∞

0
dU

2√
π(kBT )3/2

√
U exp (− U

kBT
) |ψ(t)⟩⟨ψ(t)|

= 1
2

 1 (1 − iηkBTt/2ℏ)−3/2

(1 + iηkBTt/2ℏ)−3/2 1

 . (4.7)

Defining T ∗
2 as the 1/e dephasing time of the off-diagonal term |ρ↑↓|2, we can then

obtain
T ∗

2 =
√
e2/3 − 1 2ℏ

ηkBT
≈ 0.97 2ℏ

ηkBT
. (4.8)
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Therefore, the dephasing time T ∗
2 is inversely proportional to the atomic temperature

and also the scaling factor η [121].
The value of the scaling factor varies greatly depending on the light shift mech-

anism. Here, we discuss three common mechanisms that can cause differences in
the light shift on the hyperfine ground states of an optically trapped atom, namely
circularly polarized dipole beam light shift, differential light shift, and non-paraxial
polarization gradient light shift.

Circularly polarized dipole beam light shift

Consider a far-detuned dipole trap that is circularly polarized. From the ex-
pression in Eqn. 2.7, we observe that there is a vector light shift contribution for
alkali atoms in the ground state, given by cvU0 Im[ϵ∗ × ϵ] · F̂. This gives rise to a
Zeeman sublevel-dependent energy shift that is equivalent to the effect of a fictitious
magnetic field [125]. Comparing to the Zeeman energy shifts EZ = µBgF B · F̂, we
can express this circular light contribution as an effective magnetic field,

Beff = U0cv

µBgF

Im[ϵ∗ × ϵ], (4.9)

where cv is the coefficient for the vector light shift (refer to Eqn. 2.7), µB the Bohr
magneton constant, gF the Landé g-factor, and ϵ the polarization unit vector of the
trapping field. We note that for a right circularly polarized light ϵ = (x̂ + iŷ)/

√
2,

Beff will be pointing towards the +ẑ direction.
Since both the qubit states that we focus on are magnetically sensitive, this

circularly polarized component can cause a large frequency shift between the two
ground state sublevels. For a circularly polarized trap at 851 nm, the vector light
shift will lead to a scaling factor of ηc = 3cv ≈ 0.129. This corresponds to a dephasing
time of T ∗

2 ≈ 0.97(2ℏ)/(0.129kBT ) = 8.8µs for a typical atomic temperature of
T = 13µK, which is prohibitively short for quantum information purposes. One of
the reason we opted for a linearly polarized FORT is to eliminate this vector light
shift contribution [64].

Differential light shift

Even in a linearly polarized FORT, the two hyperfine levels F = 2 and F = 1
in the 52S1/2 manifold do not experience the same light shift, as the dipole laser

66



CHAPTER 4. GROUND STATE COHERENCE

detuning is a little bit closer (by ωhfs/2π= 6.8 GHz, the hyperfine splitting) to the
atomic resonances for the F = 2 state.

To the first order, we can then express the frequency shift between the two qubit
states due to this differential light shift as

ηDF S =
∣∣∣∣∣U(∆) − U(∆ − ωhfs)

U(∆)

∣∣∣∣∣
≈ ωhfs

3

∣∣∣∣ 1
∆D1

+ 2
∆D2

∣∣∣∣
= 2.3 × 10−4, (4.10)

where we have approximated the effective detuning for the dipole light ∆ with the
weighted contributions from the D1 and D2 lines, 1/∆ = (1/3)(1/∆D1 + 2/∆D2) [77].
The differential light shift will lead to a dephasing time of T ∗

2 ≈ 0.97 2ℏ
2.3×10−4kBT

=
5 ms.

For many quantum metrology applications relying on the quality factor (ratio
of transition frequency to dephasing rate) of the transition, this differential light
shift effect is often the major limitation, which has to be eliminated via operating
with a “magic wavelength” trap [126] or compensating with higher order light shift
contributions [127, 128].

Non-paraxial polarization gradient light shift

Near the center of very tightly confining traps with beam waist w0 ≈ λ, non-
paraxial effects can be quite significant. Particularly, even for an ideal linearly
polarized input field, the trapping field will become elliptically polarized near the
focus (see Fig. 4.8(a)), due to the fact that the polarization of light will have to
rotate after passing through a lens for the polarization to remain transverse to
the propagation direction [129]. This additional polarization component can be
detrimental to coherent manipulation and cooling, as described already in the work
of [130, 131].

To quantitatively describe the impact of this non-paraxial effect, we follow the
formulation in [132] and [133]: (1) We first compute transformation to get the local
polarization of the focusing field. (2) We then numerically propagate the focusing
field to the focal region by projecting this focusing field on an orthogonal set of
modes with cylindrical symmetry (also known as the angular spectrum) [134].
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Figure 4.8: (a) Emergence of elliptical polarizations near the focus due to tight
focusing. The elliptically polarized component in y-direction is colored in blue (right
circularly polarized) and red (left circularly polarized). (b) Normalized intensity
of the circularly polarized components CyI(r⃗)/Imax on the focal plane (z = 0),
calculated with our lens and dipole beam parameters. The colors in the density
plot represent the handedness of the polarization. (c) A slice of (b) at y = 0. Near
the focus at x = 0, there is a large polarization gradient of dCy/dx = −0.27µm−1,
which corresponds to a magnetic field gradient of magnitude 0.30 G/µm for a trap
depth of U0 = kB × 0.88 mK. The gray dashed line shows the normalized intensity
profile for the linearly polarized component as a comparison.

Using the parameters of our dipole beam and high NA lens, we numerically
computed the electric field distribution on the focal plane. We define the vector
C⃗ = Im[ϵ∗ × ϵ] to quantify the direction and degree of ellipticity of an electric field
with unit polarization vector ϵ. In this convention, we will have the magnitude
|C⃗| = 1 for a circularly polarized light and 0 for linear polarization. For an input
field linearly polarized along x-direction, the most significant term corresponds to
the circularly polarized component pointing in the y-direction Cy (orthogonal to
the optical axis and the original polarization direction). Therefore, the normalized
intensity of the elliptical components CyI(x, y)/Imax on the focal plane is shown in
Fig. 4.8(b).

We observe that the polarization at the focal point still remains linearly polarized.
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As we deviate slightly along the x-direction, we quickly see the emergence of
the elliptical electric field contribution, which peaks at approximately 8 % of the
maximum intensity roughly a beam waist away from the center. In our previous
discussion on circularly polarized dipole beam light shift, we have established that
a circular polarization component can be represented as a fictitious magnetic field
according to Eqn. 4.9. The equivalent fictitious magnetic field strength is shown
in Fig. 4.8(c). We obtain a polarization gradient of dCy/dx = −0.27µm−1, which
corresponds to a magnetic field gradient of magnitude B′

y = dBy/dx = 0.30 G/µm
for a trap depth of U0 = kB × 0.88 mK. This will lead to a position-dependent energy
shift, which dephases the qubit as it undergoes oscillatory motion in the trap.

To mitigate this problem, the standard approach is to apply a large bias magnetic
field B = Bz ẑ to suppress the effective field gradient B′

y [131]. In this case, the total
magnetic field strength at the location of the atom follows |B| =

√
B2

z + (B′
yx

2) ≈
Bz + (B′2

y /2Bz)x2. Following the treatment described above, the thermal motion
of the atom will cause the two qubit states to gain a relative phase due to this
fictitious magnetic field gradient. This in turn leads to a dephasing scaling factor of
ηpg = µB∆(gFmF )B′2

y /(3mω2
trapBz) ≈ 5 × 10−3, where µB∆(gFmF ) is the difference

in the magnetic moment for the two qubit states. With the bias field of 14.4 G,
such a polarization gradient effect has been significantly suppressed, resulting in a
T ∗

2 ≈ 0.2 ms.
From the Ramsey measurement, the measured T ∗

2 of around 40µs corresponds
to a dephasing scaling factor of 2.8×10−2, which is much larger than the estimated
dephasing rate for the differential light shift effect and the non-paraxial polarization
gradient effect. We suspect the observed dephasing is caused by some circular
polarization components in the incident dipole trap beam due to the birefringence
of the optics.

4.4 Spin echo
In this part, we apply standard spin echo sequences [135, 136], which add an

extra π pulse in the middle of the free evolution window τ (see Fig. 4.9). These
sequences help to refocus the atomic state and reverse the inhomogeneous dephasing
during the free evolution time, resulting in a much slower decay of the Ramsey
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Figure 4.9: Experimental sequence for probing the coherence of the superposition
state |+⟩ = (|↑⟩ + i |↓⟩)/

√
2 in a spin echo measurement. A π/2 pulse first prepares

the qubit in the |+⟩ state. A π pulse is added in the middle of the free evolution
window of duration τ to refocus the atomic state. Finally, a π/2 pulse brings the
qubit back to the |↑⟩ state for a state measurement.

contrast. With these sequences, we obtain T2 = 480 ± 21µs for the superposition
state (|↑⟩ + i |↓⟩)/

√
2, as shown in Fig. 4.10(a).

In order to compare the coherence in this qubit with other 87Rb systems [121, 137,
138], we apply the spin echo sequence on the transition between the magnetically
insensitive 52S1/2, |F = 2,mF = 0⟩ and |F = 1,mF = 0⟩ Zeeman states, as most of
the other experiments were also probing the coherence between these two magnetically
insensitive Zeeman states. This magnetically insensitive microwave transition is
referred to as the clock transition, as it has been historically exploited as one of the
atomic fountain frequency standards [139].

Using the same experimental procedures described above, we find the coherence
time of the magnetically insensitive qubit to be T2 = 9.5 ± 0.6 ms (see Fig. 4.10(b)).
This is in reasonable agreement with previous experiments with a typical coherence
time of around 10 ms [121, 137, 138]. This measured T2 for the clock states is about
20 times longer than the one measured for the superposition of |↑⟩ and |↓⟩, also
known as the stretched states for the sublevels with the maximum possible value of
the angular momentum number. We speculate that the factor of 20 is mostly due
to the circular polarization components of the dipole beam and ambient magnetic
field fluctuations. Since the stretched states (|↑⟩ and |↓⟩) exhibit a higher sensitivity
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Figure 4.10: Spin echo measurements for the atom prepared in the basis of (a)
stretched states |↑⟩ and |↓⟩ or in the basis of (b) clock states |F = 2,mF = 0⟩ and
|F = 1,mF = 0⟩. We perform a fit to a decaying Gaussian on the spin-echo signals
to extract their respective characteristic 1/e time: T2 = 480 ± 21µs in (a) and
T2 = 9.5 ± 0.6 ms in (b). Error bars represent the standard error of binomial
statistics accumulated from around 1000 repeated sequences.

to both the magnetic field and the circular polarization components of the dipole
beam, this leads to a more detrimental dephasing mechanism for the superposition
states in the |↑⟩ and |↓⟩ basis.

For the clock transition, previous experimental demonstrations have shown that
the coherence time can be further improved to tens of milliseconds by reducing the
trap depth [121, 138]. The coherence time on the order of hundreds of milliseconds
has also been demonstrated by reducing the differential light shift with a magic-
intensity trapping technique [140]. Therefore, the magnetically insensitive states are
often proposed to be used as a long-lived quantum memory [141].
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4.5 Dynamical decoupling
In the previous section, we showed that the spin-echo technique can improve

the coherence time of a qubit system. In fact, the spin-echo technique belongs to
the class of dynamical decoupling (DD) protocols, which is one type of quantum
control techniques to eliminate the effects of the environment [35]. To understand
the effect of more complex DD on coherence, we adapt a semiclassical picture in the
context of nuclear magnetic resonance (NMR) systems, which classifies decoherence
processes into two classes: longitudinal energy relaxation and transverse dephasing,
due to random fields imparted by the environment. The longitudinal relaxation
process, described by a characteristic energy relaxation time, T1, is generally much
slower than the transverse dephasing in our system. Particularly, this longitudinal
relaxation process is caused by incoherent scattering of the dipole trap beam. A
simple estimation following Eqn. 2.5 gives T1 on the order of tens of milliseconds.

On the other hand, transverse dephasing involves the accumulation of random
phases, which is the dominant factor that decreases the state coherence after a
duration τ [142]. This can be compensated by applying the control π pulses that
flip the sign of the accumulated random phases in different periods alternately. The
sequences for some common DD strategies, for instance the periodic DD (PDD) and
Uhrig DD (UDD) are shown in Fig. 4.11(a).

To qualitatively understand the efficiency of multipulse sequences on dephasing
suppression, we define the state coherence as W (τ) = ⟨σ̂y(τ)⟩ following [142, 143],
which calculates the probability of the qubit state remaining as the superposition
state |+⟩ = (|↑⟩ + i |↓⟩)/

√
2. The state coherence W (τ) is often described as an

exponential decaying function W (τ) = exp(−χ(τ)), with

χ(τ) = 2
π
τ 2
∫ ∞

0
S(ω)gN(ω, τ)dω, (4.11)

where S(ω) is the power spectral density of environmental noise in the semi-classical
picture. Formally, assuming an environmental noise modifies the resonance frequency
of the two-level system by ∆ω(t), S(ω) is then defined as the Fourier transform of
the autocorrelation for ∆ω(t),

S(ω) =
∫ ∞

−∞
dt′e−iωt′E[∆ω(t+ t′)∆ω(t)]t , (4.12)

which has a unit of Hz2/Hz.
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The function gN(ω, τ) can then be viewed as a frequency-domain filter function
of the accumulated random phases for a refocusing sequence consisting of N separate
π pulses. The noise filter function gN(ω, τ) is given by

gN(ω, τ) = 1
ω2τ 2 |1 + (−1)1+N exp (iωτ)

+ 2
N∑

j=1
(−1)j exp (iωδjτ) cos (ωτπ/2)|2, (4.13)

where δj is the normalized position of the centre of the j-th π pulse within the total
free evolution time τ , cos (ωτπ/2) accounts for the delay caused by a physical π
pulse having nonzero pulse interval τπ.

Figure 4.11(b) illustrates the filtering properties of gN(ω, τ) for PDD sequences.
For a fixed free evolution time τ , the peak of the filter function, which is centered
close to ω = Nπ/τ , shifts to higher frequencies as N increases, leading to a reduction
of integrated low-frequency noise. On the other hand, for a fixed number of π pulses,
increasing the free evolution time τ will shift the filter to lower frequencies.

4.5.1 Periodic sequence

We first apply the simplest pulsed DD scheme, the periodic DD (PDD) sequence,
to the single atom qubit for odd number N up to N = 15. Figure 4.12 shows the
exemplary coherence evolution of the qubit system under the PDD sequence in the
case of N = 3 and N = 5. In contrast to a monotonic decaying profile, we observe
that the decaying envelopes contain collapses that always occur at the same partition
period τ/N ≈ 40µs, 120µs, and 200µs for various N . This happens to match very
well with ωzτ/N being the odd multiple of π, where ωz is the longitudinal trap
frequency. This can be understood as a dephasing process caused by the atomic
motion in the dipole trap, which has also been observed in previous studies [144,
145]; we will discuss this further in the next section.

To compare various decaying envelopes, we define the coherence time T2 as the
time for the state coherence to decay by a factor of 1/e. This is consistent with
the usual definition in a bare two-level system. As more complex noise spectral
components start to manifest because of the DD sequences, the state coherence
profile no longer follows a simple Gaussian profile as in the case of a spin echo.
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Figure 4.11: (a) Schematic representation of the PDD and UDD sequences. We
bring the atom to the (|↑⟩ + |↓⟩)/

√
2 superposition state and let it evolve freely for

a total period τ , with τ being partitioned into small windows using N number of π
pulses. PDD partitions τ into uniform periods. UDD has its j-th π pulse locating at
tj, with tj = τ sin2 [πj/(2N + 2)]. (b) Calculated filter function gN(ω, τ) for PDD
with τ = 1 ms, which functions as a bandpass filter. Increasing the number N of π
pulses shifts the peak to higher frequencies ω = Nπ/τ .
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Figure 4.12: Coherence evolution under PDD for (a) N = 3 and (b) N = 5 π pulses.
We observe a drop in the coherence at the same partition period of τ/N = 40µs,
120µs, and 200µs. Solid lines are numerical simulations using our heuristic noise
model. Error bars represent the standard error of binomial statistics accumulated
from 300 repeated sequences.

Therefore, to extract the 1/e time, we perform interpolation of experimental data
by restricting ourselves only to the tail region of the coherence profile.

Figure 4.13 shows the interpolated coherence time as a function of the number
of π pulses. We observe that the coherence time increases with the number of π
pulses N in a sequence. From the filter function depicted in Fig. 4.11(b), we have
established that increasing the number of π pulses N is equivalent to selecting a
frequency band of noise at higher frequencies. As such, our measurements suggest
that the noise follows a 1/ωα spectrum with α>0. A similar trend has been observed
in other qubit systems, including single silicon-vacancy centers [146], single nitrogen-
vacancy centers [147], and single 43Ca+ ion system [148]. In our system, we are
currently limited to pulse sequences with N ≤20 as the contrast of the coherence
evolution drops as N increases. This is because pulse imperfections, including errors
in the flip angles and the finite pulse width, introduce dephasing to the qubit, as
discussed in [149].
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Figure 4.13: Coherence time T2 as a function of the number N of π pulses. The solid
line shows the simulation result for a noise spectrum S(ω) ∝ 1/ωα with α = 1.73.

We attribute the main source of pulse imperfections in our system to the inexact
π pulse timing. We estimate the uncertainty of π pulse timing to be 1 % from the
Rabi contrast for various numbers N of π pulses. With the multipulse DD sequences,
this small deviation from the exact π rotation in the Bloch sphere gives a cumulative
error in the results. More robust pulse sequences with pulse phases that are shifted
appropriately can be applied to mitigate pulse errors. Nevertheless, the preliminary
refocusing strategy here has offered us an insight into the dephasing mechanism of a
magnetic-sensitive qubit state.

Noise simulation

With the distinctive features of coherence collapse at multiples of the trap
oscillation period and the extended coherence time as more refocusing pulses, it
seems to suggest that the environmental noise spectrum in our qubit system can be
readily modeled. We consider a simple noise model S(ω) consisting of a 1/ωα and a
Gaussian centered at the axial trap frequency ωtrap = 2π×12.0 kHz with a standard
deviation of σ1:

S(ω) = S0

ωα
+ S1 exp

(
−(ω − ωtrap)2

2σ2
1

)
. (4.14)

Here, the 1/ωα spectrum represents the noise floor produced by ambient magnetic
field fluctuations and power fluctuations of the dipole light field. The Gaussian
spectrum represents the light shift due to the atomic motion in an inhomogeneous
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dipole light field. Our heuristic noise model is able to predict the recurring features,
as shown in Fig. 4.12. We further test our model by comparing the coherence time
T2 for different numbers N of π pulses (Fig. 4.13). Again, the model is in excellent
agreement with the experimental data.

Noise reconstruction

In the field of magnetometry, DD is also implemented as a technique to measure
the noise spectrum [150, 151]. Particularly, we can reconstruct the noise profile from
the state coherence measurement with various DD sequences. Knowing that the
filter function behaves as periodic sinc-shaped peaks at frequency ωl ≈ (2l + 1)ω
with ω ≈ Nπ/τ , we probe the noise spectral density by manipulating N and τ of
the DD sequences.

The reconstruction of the noise spectral density
√
S(ω) follows the algorithm

in [143, 152]. The state coherence W (τ) is first calculated from the measured
bright state population W (τ) = 2P↑(τ) − 1, which can be approximated to S(ω =
Nπ/τ) = −π2 ln (W (τ))/(8τ) according to Eqn. 4.11. Essentially, we treat gN like
a transmission cavity with the transmission centered at ω = Nπ/τ . Then we scan
this “cavity” by varying the evolution time τ or number of refocusing pulses N . The
factor π2/8τ gives the transmission bandwidth of this “cavity”.

In the experiment, we fix N = 5 and measure the state coherence for various
free evolution periods τ . Figure 4.14 shows the noise spectra probed experimentally
when the dipole beam power is being varied. We observe the maximum noise density
around 10.4, 16.7, and 20.8 kHz for the dipole trap with a trap depth of 0.88, 1.04,
and 1.41 mK, respectively. As the dipole beam power increases, the maximum noise
density shifts to higher frequencies. The noise peaking at the axial trap frequency can
be explained by the polarization gradients of a tightly focused FORT, following [131].
Around the focal plane, the tight focusing of the FORT results in a spatially varying
vector light shift of the qubit states. As the trap frequency along axial direction
ωz =

√
2U0/(mz2

R) following Eqn. 2.9 increases along with the trap depth U0, the
light shift noise due to oscillatory atomic motion shifts to higher frequencies.

We also observe recurring peaks in the noise spectra at lower frequencies. These
peaks are caused by the smaller side lobes of the filter function gN (ω, τ), determined
by the DD sequence. We numerically construct the noise spectral density modulated
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Figure 4.14: Noise spectroscopy with DD adapted from atomic magnetometry. Red
circles are the noise spectral density reconstructed with experimental data. The
recurring peaks are a feature of the filter function gN(ω). Blue solid line represents
the simulated outcome. Trap depth is set to be (a) 0.88 mK, (b) 1.04 mK, and (c)
1.41 mK, respectively. The trap frequencies used in simulation are 12.0, 15.2, and
18.0 kHz, respectively.
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by the filter function with our heuristic noise model and find that the simulation
predicts the recurring features well. By employing a narrower filter function by
increasing the number of π pulses N , the trap frequency can be resolved with higher
precision. Ideally, we can use this as a basis for the precision measurement of trap
parameters.

In fact, the experimentally resolved spectral peaks are actually measurement
bandwidth limited. Here, the measurement bandwidth refers to the spectral width of
the filter function gN(ω, τ), which is inversely proportional to free evolution time τ .
Increasing the number of π pulses (N) enhances the resolution of the noise spectral
density. However, there is a trade-off for increasing noise due to the accumulation of
pulse errors.

Aside from the peak features, we notice that the background noise floor does
not vary with dipole beam power. This implies that the intensity fluctuation of
the dipole beam is not the dominant reason for the background noise. In fact, we
measure the intensity fluctuation of the dipole beam and find that it only leads to
noise spectral density of 0.5 Hz/

√
Hz.

4.5.2 Uhrig sequence

After PDD, we also apply the UDD protocols [153] to suppress dephasing in our
qubit system. In UDD, the j-th refocusing pulse locates at tj = τ sin2 [πj/(2N + 2)].
The UDD sequence has been analytically shown to provide strong suppression of
phase accumulation when the noise environment contains a high-frequency component
and a sharp high-frequency cutoff. Compared to the PDD protocol with the same
number of π pulses (N), the filter function associated with the UDD protocol
produces a wider pass band that peaks at a lower frequency, implying that the
UDD protocol is more susceptible to low-frequency noise. Another characteristic of
the UDD protocol is more pronounced sidelobes compared to the PDD sequence,
suggesting potential performance degradation under a broadband noise spectrum.

Figure 4.15 shows the UDD coherence evolution of a single atom qubit. Again,
the simulation with our heuristic noise model introduced previously qualitatively
predicts the wiggles in the |↑⟩ population as the total free evolution time τ varies.
However, the simulation falls short in predicting the magnitude of the wiggles. This
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Figure 4.15: Coherence evolution under UDD for (a) N = 3 (T2 = 926µs) and (b)
N = 5 (T2 = 1285µs) π pulses. Solid lines are numerical simulations using our
heuristic noise model with the same parameters implemented in the previous section.
Error bars represent the standard error of binomial statistics accumulated from 300
repeated sequences.

is most likely due to the simplified formulation for the filter function gN(ω, τ) that
assumes an instantaneous π pulse.

We also look at the 1/e coherence time under the UDD protocol for a free
evolution time τ larger than 500µs to minimize the influence of the wiggles. We
observe a coherence time of 926 ± 23µs and 1285 ± 30µs for N=3 and N=5 π pulses,
respectively. Compared with the coherence time obtained using PDD with the same
number of π pulses (764 ± 14µs for N=3 and 1060 ± 60µs for N=5), we observe an
improvement of 21.2 % on the coherence time, consistent for both N=3 and N=5.
We also notice that PDD and UDD sequences perform quite similarly because, in
general, a DD sequence requires a rather distinctive noise spectrum to outperform
the others.
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Figure 4.16: Optimization with five π pulses for a fixed free evolution time τ =
900µs and τ = 1500µs. (a) Schematic representation of the DD sequence, satisfying
τ0 + τ1 + τ2 = 0.5 τ ; (b)–(d) population of F = 2 state at the end of refocusing.
For both τ = 900µs and τ = 1500µs, the maximum fidelity is not given by standard
DD sequences such as UDD (τ1/τ = 18.3 %, τ2/τ = 25.0 %) or PDD (τ1/τ = 16.7 %,
τ2/τ = 16.7 %); the maximal point locates at τ1/τ = 19.2 %, τ2/τ = 19.6 % in the
simulation.
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Optimization to find the optimal sequence

For most applications in quantum information processing, we aim to preserve
coherence maximally for a given duration. Here, we demonstrate the optimization
protocol with N=5 π pulses. In general, this involves N + 1 = 6 free parameters for
each interpulse period partitioned by a refocusing pulse. As shown in Fig. 4.16(a),
we impose a fixed free evolution time τ and reflection symmetry as constraints to
reduce the number of free parameters from 6 to 2. To better understand the effect
of the noise on the qubit coherence, we numerically calculate the dynamics of the
qubit state using our heuristic noise model introduced in previous sections, following
Eqn. 4.11.

We find a good agreement between the observed coherence and the model for
the same parameters used in the previous section. The maximum coherence is
obtained with the protocol that follows (τ0/τ , τ1/τ , τ2/τ)=(11.2 %, 19.2 %, 19.6 %).
Strikingly, this optimal sequence matches well with the Carr–Purcell (CP) sequence,
which is widely used in the field of NMR and is constructed when the first and last
precession periods are half of the duration of the interpulse period, e.g., (τ0/τ , τ1/τ ,
τ2/τ)=(10 %, 20 %, 20 %) [154].

4.5.3 Carr–Purcell sequence

Inspired by the results above, we apply the CP sequence to our system to prolong
the coherence time T2. In a CP scheme, the time intervals are partitioned in such a
way that the first and the last intervals are half the duration of the other intervals
(see Fig. 4.17(a)).

Experimentally, we observe a coherence time of 1017 ± 38µs and 1274 ± 42µs
for N =3 and N =5 pulses, respectively. The results are shown in Fig. 4.17(b).
Compared to the coherence time obtained using the PDD protocol in Fig. 4.13,
there is an improvement in T2 of 33.1 % and 20.2 % for N=3 and N=5 π pulses,
respectively, which agrees with the optimization results in Fig. 4.16(b). However, the
improvement in coherence time halts at larger N . Particularly, the coherence time
decreases after N ≥15, due to the drop in signal contrast caused by the accumulation
of pulse imperfections.
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Figure 4.17: (a) Schematic representation of the CP and CPMG sequences. In both
sequences, the qubit state is brought to the superposition state (|↑⟩ + i |↓⟩)/

√
2 with

a π/2 pulse. The first and the last intervals (τ ′) are half the duration of the other
intervals (2τ ′), satisfying 2τ ′N = τ . In CP, we apply an odd number of π pulses that
have the same phase as the π/2 pulse, denoted as πx. While in CPMG, we apply an
even number of π pulses that have an orthogonal phase as the π/2 pulse, denoted
as πy. Afterward, the atom is brought back to the |↑⟩ state by a π/2 pulse (3π/2)
pulse for state measurement in a CP (CPMG) sequence, respectively. (b) Coherence
time T2 as a function of the number N of π pulses for the CP and CPMG sequence.
We measure a T2 of 6.81 ± 0.08 ms with N = 50 using the CPMG protocol.

4.5.4 Carr–Purcell–Meiboom–Gill sequence

In order to tackle this problem, we apply the Carr–Purcell–Meiboom–Gill
(CPMG) sequence to our qubit system, which has been demonstrated to be able
to mitigate pulse imperfections for the preservation of a quantum state [155]. The
interpulse period for the CPMG scheme is the same as for the CP scheme, except
that the refocusing microwave pulse is 90◦ phase shifted from the π/2 pulse, which
prepares the superposition state (see Fig. 4.17(a)). This can be understood as a π/2
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rotation along the x-axis in the Bloch sphere, which prepares the superposition state
pointing along the y-direction, (|↑⟩ + i |↓⟩)/

√
2. All the 90◦ phase shifted refocusing

pulses will then be π rotation along y-axis.
We compare the improvement in coherence time under the CPMG protocol to

the CP protocol in Fig. 4.17(b). For a small pulse number N , the performance of the
CPMG protocol is identical to the performance of the CP protocol. However, with
the CPMG sequence, we can apply up to N = 50 pulses with reasonably high signal
contrast and therefore achieve a coherence time of 6.81 ± 0.08 ms, which is 3.7 times
longer than the optimal coherence time obtained with the PDD protocol. We have
also applied other variants of the CPMG protocol, such as the XY schemes [156],
and we observe similar coherence performance.

4.6 Summary
We have presented a detailed experimental study of the implementation of DD in

a single neutral atom qubit system, by comparing the performance among standard
DD protocols, including periodic DD, Uhrig DD, CP DD, and CPMG DD. We find
an improvement in the coherence time T2 by 2 orders of magnitude from T ∗

2 , using
the CPMG sequence. With a qubit coherence time of 6.8 ms, our system can be a
potential interface platform to facilitate the high-fidelity transfer of quantum states
between quantum repeater nodes separated by thousands of kilometers [114].

With the state coherence, we have characterized the noise spectrum of an optically
trapped 87Rb atom. By suppressing the motion-dependent dephasing, we expect
to see improvements in the coherence times, which will open up new possibilities
for the implementation of more robust free-space neutral atom quantum memories
for future quantum repeater networks [157]. A better understanding of the qubit
response to noise may also help to develop a broadband single-atom sensor that
would allow imaging of magnetic fields with a spatial resolution at atomic length
scales.
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Chapter 5

Fano spectrum and cooling
In this chapter, we investigate free-space cooling of a single neutral 87Rb atom

in a mK deep far-off-resonant optical dipole trap (FORT) using electromagnetically
induced transparency (EIT), where the trap frequencies are typically around tens of
kHz, an order of magnitude smaller than in typical ion traps [158–160] and standing
wave traps [161]. We first resolve the Fano profile via excitation spectroscopy,
which is the first reported observation of such a profile from a neutral atom system.
We then implement a cooling scheme by altering the configuration and detunings,
reaching a final temperature of less than 6µK.

5.1 Fano spectrum
We consider an atomic three-level Λ system with two ground states coupled

to an excited state by an off-resonant light field each. When one of the driving
fields (coupling field) in the system is strong, the corresponding ground to excited
transition is strongly mixed. The newly formed eigenstates are comprised of two
dressed states with higher energy and one weakly shifted ground state (see Fig. 5.1).
Probing the scattering of the atom by scanning the frequency of the weaker field
(probe field) reveals two peaks: a wide symmetric profile and, a Fano-type profile
characterized by a narrow and bright asymmetric resonance sharply cut on the side
by a dip in the atomic fluorescence [162]. The dip, observed when the detunings of
the probe and coupling light match, is a consequence of suppression in spontaneous
emission due to coherent population trapping in the dark state. Such a profile has
been observed previously in spectroscopy of cold ions [163, 164].
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Figure 5.1: Left: A three-level Λ system interacting with a pair of coupling and
probe fields. The stronger coupling field drives the |g′⟩ ↔ |e⟩ transition, leading to
new eigenstates (|±⟩) with energy shifts of ±δ. The absorption of the weaker probe
field that drives the |g⟩ ↔ |e⟩ transition will then be modified, as indicated in the
absorption curve. Right: The absorption spectrum of a weak probe beam reveals
two peaks corresponding to each of the eigenstates and an asymmetric-Fano profile
due to the dark state.

5.1.1 Theoretical description

The theoretical framework describing the scattering process for a three-level atom
interacting with a pair of coupling and probe fields has been covered extensively in
prior research [162, 163]. Here we begin with a quick introduction to establish a
common notation. As shown in Fig. 5.1, we consider a Λ system formed by two
ground states |g⟩ and |g′⟩, each coupled to an excited state |e⟩ with light fields of
frequency ωp (probe) and ωc (coupling), respectively.

Under the dipole (Ω = µ⃗ ·E⃗/ℏ where µ⃗ is the atomic dipole moment) and rotating
wave approximations, the interaction of a three-level atom with the probe and
coupling light can be described by the following effective non-Hermitian Hamiltonian
in the rotating frame of the driving field, represented in the space {|g′⟩ (set to energy
0),|e⟩,|g⟩} [164]:

Ĥint = ℏ


0 Ωc/2 0

Ωc/2 −∆c − iΓ/2 Ωp/2
0 Ωp/2 ∆p − ∆c

 . (5.1)

Here, Γ is the decay rate of the excited state taken to be the same to both ground
states, ∆p = ωp −ωeg and ∆c = ωc −ωeg′ are the detunings of the probe and coupling
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light frequencies ωp and ωc from the respective atomic transitions, and Ωp (Ωc) is
the Rabi frequency associated with the probe (coupling) driving field.

Eigendecomposition of Ĥint reveals the energy shifts and linewidths for the new
resonances. In the limit of a weak probe driving field (Ωp ≪ Ωc,∆c), the ground state
|g⟩ becomes an eigenstate with the energy eigenvalue given by Eg/ℏ = (∆c − ∆p).
The other two eigenstates |±⟩ from the subspace of {|g′⟩, |e⟩} are associated with
the two light-shifted resonances close to ∆p ≈ ∆c and ∆p ≈ 0 as the probe
detuning ∆p is being varied. Their corresponding eigenvalues E±, denoted as
E+/ℏ = (∆c + δ) − iΓ+/2 and E−/ℏ = −δ − iΓ−/2, both consist of a real part
representing light shift ±δ, and an imaginary part accounting for radiative decay
Γ±. For a large detuning ∆c ≫ Ωc,Γ, these terms can be approximated through a
perturbative expansion to the leading orders of 1/∆c:

δ = Ω2
c

4∆c

,

Γ+ = Γ Ω2
c

4∆2
c

,

Γ− = Γ − Γ+ = Γ
(
1 − Ω2

c

4∆2
c

)
. (5.2)

For increasing Ωp, we are no longer able to decompose Ĥint in a sum of smaller
subspaces, since we cannot neglect the contribution from the coupling between |g⟩
and |e⟩. Previous theoretical work has looked into this problem and solved the
steady solution for the three-level optical Bloch equation around ∆p ≈ ∆c, which
gives [164]

δ = ∆c

4∆2
c + Γ2 (Ω2

c − Ω2
p),

Γ+ = Γ
4∆2

c + Γ2 (Ω2
c + Ω2

p),

Γ− = Γ − Γ− = Γ(1 −
Ω2

c + Ω2
p

4∆2
c + Γ2 ). (5.3)

Nevertheless, the narrow resonance associated with |+⟩ is shown to exhibit an
asymmetric Fano-shaped profile [162] and possess a spectral width Γ+ much smaller
than the natural linewidth Γ for Ωc,Ωp ≪ ∆c. Adapting from the formulation
in [162], this Fano profile can be represented by the transition probability |T |2 from
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52P3/2

mF = -3 -2 -1

F'=3

σ– couplingσ+ probe

0 1 2 3 UHV

Figure 5.2: (a) Energy levels and transitions in 87Rb used for observing the Fano
scattering profile. (b) Optical setup for Fano spectroscopy. The backscattered
atomic fluorescence is collected by the high numerical aperture lens and coupled
to a single-mode fiber connected to an avalanche photodetector. BS: beamsplitter,
QWP: quarter-wave plate, PBS: polarizing beamsplitter, IF: interference filter, APD:
avalanche photodetector, UHV: ultra-high vacuum. B: magnetic field

state |g⟩ to state |e⟩, given by

|T |2 =
64ℏ2Ω2

pΓ2

4(∆p + δ)2 + Γ2
−

[2δ/Γ+ + 2(∆p − ∆c − δ)/Γ+]2
1 + [2(∆p − ∆c − δ)/Γ+]2

≡
64ℏ2Ω2

pΓ2

4(∆p + δ)2 + Γ2
−

(q + ϵ)2

1 + ϵ2 , (5.4)

where the first fraction represents a resonance near ∆p = −δ. The second fraction
follows the form of a Fano resonance profile with the Fano parameter q = 2δ/Γ+

and the reduced variable ϵ = 2(∆p − ∆c − δ)/Γ+.
Historically, the Fano resonance line shape was first discussed in the context

of the excitation spectra of electron scattering by Helium atoms [165]. It can be
understood as the interference between two scattering processes: one that drives
a discrete state resonantly, and another one within a continuum of states. In our
case, the emergence of a Fano profile in fluorescence scattering is caused by the
interference between the narrow |g⟩ → |+⟩ transition and the |g⟩ → |−⟩ transition,
which has a much larger radiative linewidth Γ− ≈ Γ and can be approximated as a
continuum process.

5.1.2 Implementation

To observe the Fano spectrum from a single 87Rb atom, we consider a Λ system
formed by the Zeeman sublevels |g⟩ ≡ |F = 2,mF = −2⟩ and |g′⟩ ≡ |F = 2,mF = 0⟩
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of the 52S1/2 F=2 hyperfine ground state, and |e⟩ ≡ |F ′ = 3,mF ′ = −1⟩ of the 52P3/2

F ′=3 excited state, subject to a pair of driving fields with opposite polarizations.
As indicated in Fig. 5.2(a), a stronger left circularly polarized (σ−) coupling beam
of Rabi frequency Ωc, couples the state |g′⟩ to |e⟩ with a detuning ∆c. A weaker
right circularly polarized (σ+) probe beam of Rabi frequency Ωp and detuning ∆p

drives the |g⟩ ↔ |e⟩ transition.
Figure 5.2(b) shows a simplified schematic of our experimental setup. We trap a

single 87Rb atom at the focus of a pair of high numerical-aperture (NA) aspheric
lenses in a far-off-resonant dipole trap (FORT). The FORT is formed by a linearly
polarized Gaussian beam at 851 nm (dipole beam), tightly focused by a high NA lens
to a waist of w0 = 1.1µm. The single atom is loaded into the FORT from a MOT.
The aspheric lenses with a NA of 0.75 form the key component of our experiment as
they not only enable tight spatial confinement of the atom in the FORT but also
allow efficient collection of fluorescence from the atom.

For driving the Λ system, the coupling and probe beams employed are generated
from the same external cavity diode laser. This ensures a fixed phase relationship
between the two driving fields. The light from this laser is split into two paths for
the coupling and probe beams with the frequency of light independently controlled
by an AOM in each path. The two beams are then overlapped in a beam splitter and
sent co-propagating to the atom. This can avoid heating processes as a consequence
of undesired motional coupling arising from the momentum transfer (∆k⃗ = k⃗c −
k⃗p, where k⃗c and k⃗p are the wavevector of the coupling beam and probe beam,
respectively) involved in the two-photon process (more details are described in the
cooling part in Chapter 5.2.1).

To prevent probe and coupling beams from entering the detection system, the
atomic fluorescence is collected in the opposite direction of the probe and coupling
beams using a 90:10 beam splitter, similar to the Mollow experiment described
in Chapter 3.3.1. We employ a polarization filter consisting of a quarter-wave
plate (QWP) and polarizing beam splitter (PBS) to selectively collect the left or
right circularly polarized fluorescence scattered by the atom. This is to eliminate
scatterings from the |F = 2,mF = −2⟩ → |F ′ = 3,mF = −3⟩ cycling transition
induced by the strong coupling field, which can obscure the weak scatterings from
the two-photon process from the Λ scheme.
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Figure 5.3: Experimental sequence for measuring the Fano scattering profile. The
coupling and probe beams are applied for a duration of 3 ms, during which the
atomic fluorescence is recorded using an APD.

The experimental sequence is depicted in Fig. 5.3. When a single 87Rb atom is
loaded into the FORT from the MOT, we perform PGC for 10 ms and apply a bias
magnetic field of 14.4 G along the optical axis to remove the degeneracy of the Zeeman
sublevels. Next, the single atom is illuminated with the pair of strong coupling
and weak probe beams for 3 ms. During this interval, the atomic fluorescence is
detected using an APD. The measurement is repeated over approximately 3000 runs
for various values of Ωp as ∆p is scanned by ± 2π × 6 MHz around ∆c while the
coupling beam parameters remain fixed at ∆c = −2π × 80 MHz and Ωc = 1.4Γ.

Figure 5.4 shows the detected fluorescence count rates projected in σR circu-
lar polarization, which corresponds to the |F = 2,mF ⟩ ↔ |F ′ = 3,mF ′ = mF + 1⟩
transition (|g⟩ ↔ |e⟩), and σL circular polarization, which corresponds to the
|F = 2,mF ⟩ ↔ |F ′ = 3,mF ′ = mF − 1⟩ transition (|g′⟩ ↔ |e⟩). The blue solid
curves display the fitting of a Fano line shape given in Eqn. 5.4 to the experimental
spectra (red points). We notice that the fluorescence detection rates for the two
circular polarizations have opposite skewness, where the orientation of the skewness
depends on the sign of the detuning ∆c. The peak associated with the σR light is
skewed left while the peak associated with the σL light is skewed right.

For all probe powers, an asymmetrical Fano peak is observed with a linewidth
smaller than the natural linewidth (Γ = 2π× 6 MHz). As shown in Fig. 5.5, the Fano
linewidths extracted from the fits increase linearly with probe intensities (Γ+/2π =
350 ± 30, 410 ± 30, 700 ± 40, and 1000 ± 50 kHz for probe saturation parameters of
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Figure 5.4: Observation of Fano scattering profiles. Red dots: Single photon
scattering detected in APDs from the off-resonant two-photon process, projected
into the probe polarization (left column) or the pump polarization (right column).
Blue curve: Fits to Fano profiles following Eqn. 5.4. The probe beam power increases
from subplot (a) to (d) (similarly, (e) to (h)) as indicated by the Rabi frequency
values. All plots show a clear suppression in scattering at ∆p/2π≈ −80 MHz where
the atom is optically pumped to the dark state. Error bars represent the standard
error of the mean determined from around 2000 repeated experimental sequences.
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Figure 5.5: Linear increase in the Fano linewidths as a function of probe intensities.
The blue solid line is a fit to a linear function. Red dots are the Fano linewidths
extracted from the fits performed to the scattering profile in Fig. 5.4. Error bars
represent one standard deviation obtained from least-squares fit of the individual
spectra.

2Ω2
p/Γ2 = 1, 2, 4, and 8, respectively). Compared with the theoretical predictions

calculated using the expression in Eqn. 5.3 (Γ+/2π ≈ 83, 100, 132, and 201 kHz), the
measured values are larger by about a factor of 4.7 ± 0.6 for all probe powers. This
discrepancy here could be attributed to the presence of multiple Fano resonances re-
sulting from other Zeeman sublevels. Specifically, there is a Λ configuration involving
the states |F = 2,mF = −1⟩, |F ′ = 3,mF ′ = 0⟩, and |F = 2,mF = 1⟩, as well as an-
other Λ configuration formed by the states |F = 2,mF = 0⟩ (|g′⟩), |F ′ = 3,mF ′ = 1⟩,
and |F = 2,mF = 2⟩. As the transition matrix elements that couple between the
ground and excited state are quite different for these Λ configurations, they lead to
distinct shifts and linewidth in the resonance. Consequently, the scattering profiles
for these three sets of Λ configurations could overlap and distort the total scattering
rate, causing the apparent broadening of the Fano feature. It is possible to evaluate
the contributions from the other Zeeman sublevels by solving a twelve-level optical
Bloch equation that incorporates all the sublevels. This work is currently underway.

Furthermore, the dark state, or the dip in the scattering spectra, ideally should
remain fixed at ∆p = ∆c, independent of the driving fields. However, we observe
that the minimum of the scattering is actually shifting to a larger detuning for
increasing Ωp. This is because the probe field Ωp also drives the transition between
|g′⟩ = |F = 2,mF = 0⟩ and the excited state |F ′ = 3,mF ′ = 1⟩, which is not taken
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into account in the three-level model. This coupling effectively imposes an additional
light shift on |g′⟩, leading to the shift in the scattering feature.

5.2 EIT cooling
In the previous experiment, we demonstrated that a Fano resonance can be

engineered to have subnatural linewidth by choosing a suitable Ωp and Ωc. In fact,
when the motional spread of the atomic wavepacket in an external conservative
potential is taken into account, the dark state becomes sensitive to the atomic position
in such a potential. This position dependence can additionally be engineered to cool
down the atom [166]. Specifically, when the dark state is decoupled from the excited
state at the carrier frequency but is coupled to a bright state at the red sideband
(which has one phonon energy lower), it results in cooling as the atom transitions to
a lower vibrational state.

If the energy difference between the dark state and a higher energy bright dressed
state is made to match the vibrational mode spacing of the trap confining the
atom, an atom transiently pumped into the dark state is coupled to the bright
state from a lower vibrational mode. It can thus emit a phonon and transfer to
the respective dressed state, cooling down in the process. This cooling technique
has been implemented in platforms such as trapped ions [158–160], neutral atoms
confined in standing wave traps [161], and quantum gas microscopy setups [167].

5.2.1 Theoretical model

We consider a trapped atom in a one-dimensional harmonic potential given by a
trap frequency of ωtrap and motional eigenstate |n⟩. In this case, the Fano profile
associated with the sideband transitions |n⟩ → |n± 1⟩ will have an energy shift
of ±ℏωtrap to account for the quantized energy spacing of the harmonic oscillator.
Furthermore, at the minimum of the Fano profile (∆p = ∆c), the |g, n⟩ → |e, n⟩
transition is suppressed due to the formation of a dark state. With a positive
detuning for ∆c and ∆p, along with a suitable Ωc, we can tailor the absorption
spectrum to fulfill δ = Ωtrap. This corresponds to having the |g, n⟩ → |+, n− 1⟩
red sideband overlap with the dark state, signifying the enhancement of the red
sideband transition (see Fig. 5.6).
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Figure 5.6: Left: EIT cooling transition in a three-level Λ system. A strong coupling
beam forms new eigenstates |+⟩ and |−⟩ from the bare atomic ground state |g′⟩
and excited state |e⟩. Here, n denotes the vibrational quantum number for atomic
motional state in a harmonic trap with a trap frequency of ωtrap. By choosing a
suitable intensity for the coupling beam, the spectrum can be engineered such that
the transition |g, n⟩ → |+, n− 1⟩ is enhanced to achieve cooling. Right: Scattering
spectrum of a weak probe beam.

Moreover, the change in the kinetic energy of the atom has to be sourced from the
recoil energy of the scattered photon to facilitate a sideband transition |n⟩ → |n± 1⟩.
The probability for this motional coupling to occur is characterized by the Lamb-
Dicke parameter η, defined as η = |⃗kp − k⃗c| cos (ϕ) a0, where k⃗p and k⃗c are the wave
vectors of the probe and coupling beams, ϕ is the angle between k⃗p − k⃗c and the
motional axis, and a0 is the position uncertainty of the particle with mass m in the
ground state of the harmonic oscillator, given by a0 =

√
ℏ/(2mωtrap).

Under these conditions, the dynamics of the mean vibrational number ⟨n⟩ can
be described with a rate equation [168]:

d

dt
⟨n⟩ = −(A− − A+)⟨n⟩ + A+ , (5.5)

where A− and A+ represent the excitation probability for the red and blue sidebands:

A± =
Ω2

p

Γ
Γ2ω2

trap

Γ2ω2
trap + 4[Ω2

c/4 − ωtrap(ωtrap ∓ ∆c)]2
. (5.6)

Following Eqn. 5.5, this EIT cooling technique will have a cooling rate of η2(A−−A+),
with a steady-state vibrational quantum number of ⟨n⟩ = A+/(A− − A+).
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Figure 5.7: (a) Energy levels and transitions in 87Rb used in the cooling experiment.
(b) Experimental configuration for the off-resonant EIT cooling process. The probe
beam is now set to be orthogonal to the optical axis to allow for motional coupling.

5.2.2 Implementation

In this part, the Λ configuration is now realized with a σ− polarised coupling beam
connecting sublevel |g′⟩ ≡ |F = 2,mF = −1⟩ of the 52S1/2 F=2 hyperfine ground
state to sublevel |e⟩ ≡ |F ′ = 2,mF ′ = −2⟩ of the 52P3/2 F

′=2 hyperfine excited
state, and a π polarised probe beam connecting sublevel |g⟩ ≡ |F = 2,mF = −2⟩
of the 52S1/2 F=2 hyperfine ground state to |e⟩, as illustrated in Fig. 5.7(a). Both
coupling and probe are blue-detuned from their respective transitions by ∆c = ∆p =
2π× 94.5 MHz ≈ 16 Γ.

In order to attain motional coupling, we require a configuration in which the
momentum transferred by light to the atom is non-zero (∆k⃗ = k⃗c − k⃗p ≠ 0). For
this, the direction of the probe beam is altered such that it is sent orthogonal to the
coupling beam in a top-down direction, polarized parallel to the bias magnetic field
to excite π transitions (see Fig 5.7(b)).

Our FORT traps the atom in a 3-D harmonic oscillator with radial (ωx/y) and
axial (ωz) trapping frequencies (ωx/y, ωz) = 2π× ( 73 ± 2, 10 ± 1 ) kHz, deduced from
a parametric excitation measurement (refer to Chapter 2.3.5). Accordingly, the
associated Lamb-Dicke parameters (ηx, ηz), which quantify the motional coupling,
are estimated to be ( 0.23, 0.59 ) for our EIT cooling beam geometry.

The experimental sequence is depicted in Fig. 5.8. Similar to the experimental
sequence described in the previous part, we start with 10 ms of PGC to bring down
the atomic temperature after successful loading of a single atom from the MOT,
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Figure 5.8: Experimental sequence for performing EIT cooling on a single 87Rb
atom. The coupling and probe beams are switched on for a duration of 20 ms to
apply EIT cooling, followed by a release-and-recapture measurement to quantify the
atomic temperature.

followed by a bias magnetic field of 1.44 mT along the FORT beam propagation
direction to remove the degeneracy of the Zeeman states. We then apply EIT cooling
by switching on the coupling and probe beams for 20 ms to drive the Λ system, a
duration chosen arbitrarily but sufficiently long to ensure that the system reaches a
steady state. During this cooling process, a weak repumper beam resonant to the
D1 line at 795 nm between 52S1/2F = 1 and 52P1/2F

′ = 2 is also switched on to
transfer the atom back into the F = 2 hyperfine ground state if it spontaneously
decays into the F = 1 state.

Following that, we employ a “release and recapture” method [92] to quantify the
temperature of the single atoms. During this process, the EIT cooling beams are
switched off and the atom is released from the trap for an interval τr by switching off
the FORT beam. Subsequently, the FORT is switched on to recapture the atom and
we detect atomic fluorescence by switching on the MOT’s cooling and repumping
beams to check the presence of the single atom. We repeat each experiment around
two hundred times to obtain an estimate of the recapture probability. Finally, we
infer the atomic temperature by comparing the recapture probabilities to Monte
Carlo simulations of the trajectories of the single atoms [92].

In the first part of the thermometric experiment, we would like to verify the
capability of the two-photon process to either cool down or heat up the single atoms.
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We apply the EIT cooling by varying the ∆p and ∆c of the pair of coupling and probe
beams over a range of ±2π × 1 MHz while fixing Ωc and Ωp to 2π × 5.2 MHz and
2π× 2.0 MHz, respectively. We choose Ωc = 2π× 5.2 MHz because this parameter is
expected to a Fano resonance shift coinciding with the trap frequency (δ = Ωtrap

following Eqn. 5.2) that leads to optimal cooling. Here, we fix the release interval to
τr = 30µs, empirically determined to yield the largest signal contrast for recapturing
measurements from which the temperature can be inferred.

The resulting atomic temperature is shown in Fig. 5.9(a). Cooling and heating
effects close to the dressed states for the two-photon process are clearly visible. In
comparison, if the conventional PGC technique is used to cool the atoms, they
typically show a temperature of 14.7µK, indicated by the white shading in the
density plot. We observe an effective cooling phenomenon in the anti-diagonal stripe
that corresponds to ∆p = ∆c, in agreement with the theoretical prediction. Heating
occurs most dominantly around ∆p = ∆c + 2π× 250 kHz, where the blue sideband
transitions are preferable.

In the following parts, we will maintain ∆c = 2π × 94.5 MHz fixed for our EIT
cooling parameter. To obtain a more accurate estimation of the atomic temperature,
we now deduce a temperature value based on a series of recapturing probabilities
for 12 different release intervals ranging between 1 and 80µs. We vary the probe
detuning ∆p around ∆c, as shown in Fig. 5.9(b). We observe the typical asymmetrical
Fano profile, with the lowest temperature of 5.7 ± 0.1µK measured at ∆p = ∆c.

According to [166], optimal cooling is achieved when the dressed state energy
shift δ caused by the coupling beam is equal to the trap frequency, δ = ωx/y,
as it maximizes the absorption probability on the red sideband transition. To
confirm this behavior, we record the atomic temperature using the same “release
and recapture” scheme when scanning the intensity of the coupling beam, keeping
∆c = ∆p = 2π × 94.5 MHz and Ωp = 2π×2.0 MHz fixed. The results are depicted
as a function of the saturation parameter s = 2Ω2

c/Γ2 in Fig. 5.10(a). Cooling is
observed within the region between s = 0.5 and s = 3, with the optimal cooling
parameter obtained at s = 1.42 ± 0.03 (or Ωc = 2π × (5.06 ± 0.05) MHz). This
corresponds to a dressed state energy shift of δ = Ω2

c/(4∆c) ≈ 2π × (68 ± 1) kHz,
as introduced in Eqn. 5.3, which is fairly consistent with the radial trap frequency
ωx in our system.

97



CHAPTER 5. FANO SPECTRUM AND COOLING

94

94.5

95

c
o
u
p
lin

g
 d

e
tu

n
in

g
 (

M
H

z
)

 0

 50

 100

 150

te
m

p
e
ra

tu
re

 (
µ

K
)

(a)

 0

 40

 80

 120

94 94.5 95

Tmin = 5.7(1) µK

te
m

p
e
ra

tu
re

 (
µ

K
)

probe detuning (MHz)

(b)

Figure 5.9: (a) Atomic temperature inferred from release-recapturing measurements
after 20 ms of EIT cooling at different ∆c and ∆p. The anti-diagonal blue band
indicates the dark state resonance which has the highest cooling efficiency. (b)
Atomic temperature for ∆c = 2π× 94.5 MHz shows the asymmetrical Fano profile.
This ∆c corresponds to the boxed region in (a).

98



CHAPTER 5. FANO SPECTRUM AND COOLING

 0

 25

 50

 0  2  4  6  8

(a)

te
m

p
e
ra

tu
re

 (
µ

K
)

coupling saturation parameter 2Ωc
2
/Γ

2

 0

 25

 50

 0  2  4  6  8

(a)

te
m

p
e
ra

tu
re

 (
µ

K
)

coupling saturation parameter 2Ωc
2
/Γ

2

 5

 10

 15

 0  5  10

τcool = 2.1(3) ms, Tfinal = 5.9(2) µK

(b)

te
m

p
e
ra

tu
re

 (
µ

K
)

cooling duration (ms)

Figure 5.10: (a) Atomic temperature at ∆p = ∆c = 2π × 94.5 MHz for varying
Ωc. We observe an effective cooling for s = 2Ω2

c/Γ2 between 0.5 and 3, with the
optimal cooling around s = 1.42 ± 0.03. The dotted line indicates the initial
atomic temperature after PGC of 14.7µK. Error bars represent the standard error
of binomial statistics accumulated from around 200 repeated runs. (b) Atomic
temperature measured after different cooling durations. A cooling time of 2.1 ms
and final temperature of 5.9 ± 0.2µK are extracted from the exponential fit.

It is worth mentioning that we are only able to observe the cooling effect on
the radial axis here due to the limitation of the “release-and-recapture” technique.
Particularly, a Gaussian optical trap typically has smaller spatial confinement in the
radial direction than in the axial direction. Consequently, it is much easier for the
atom to escape the trap in the radial direction during the release interval. To gain
insights into atomic motion along the axial direction, one would have to consider
employing methods such as motional sideband resolving Raman spectroscopy [130,
131] or microwave sideband spectroscopy in a state-dependent trap potential [169].

We then extract the cooling rate by measuring the atomic temperature after a
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variable time of EIT cooling, as shown in Fig. 5.10(b). Here, we apply the optimal
cooling parameters (∆c = ∆p = 2π × 94.5 MHz, Ωc = 2π × 5.06 MHz and Ωp =
2π×2.0 MHz) to the pair of coupling and probe beams. From an exponential fit to the
experimental data, we deduce a 1/e cooling time constant of 2.1 ± 0.3 ms and a steady-
state temperature of 5.9 ± 0.2µK. The measured cooling time constant is about 10
times longer than the theoretical value (0.2 ms) estimated from Eqn. 5.6. Additionally,
the mean phonon number inferred from the measured atomic temperature is ⟨nx⟩ =
1.18 ± 5, which is higher than the theoretical value of 0.002 expected for our
parameters from the rate equation described in Eqn. 5.6.

These discrepancies are possibly due to unaccounted heating effects originat-
ing from scatterings of the strong coupling beam via the |F = 2,mF = −2⟩ ↔
|F ′ = 3,mF ′ = −3⟩ cycling transition. Moreover, the state |e⟩ we choose here in the
52P3/2 F

′=2 hyperfine level has a significantly high probability (50 %) to decay into
the 52S1/2 F=1 hyperfine level, which is decoupled from the pair of EIT cooling
beams. Despite the use of a repumper beam to transfer the atom back to the
F = 2 state, this process introduces a delay as well as additional heating in the
cooling sequence. In comparison, the cooling rate for the EIT cooling is 1.9 times
slower than the conventional PGC, which has a typical 1/e cooling time constant of
1.1 ± 0.1 ms [91].
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5.3 Summary
In conclusion, we demonstrate cooling by electromagnetically induced trans-

parency (EIT) for a single neutral atom confined in an optical dipole trap. We
resolve the signature Fano profiles in the fluorescence excitation spectrum and also
the temperature measurement. A final temperature of less than 6µK has been
achieved with EIT cooling, a factor of two lower than the previous value obtained
using the polarization gradient cooling technique.

Finally, the implementation of this relatively simple cooling scheme can poten-
tially diversify the spectrum of techniques accessible for the enhanced manipulation
of atomic motion. This technique can be attractive for manipulating motional states
of ultracold atoms in optical tweezer arrays.
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Chapter 6

Array of two single atoms

This chapter documents some ongoing experimental efforts to increase the number
of single-atom traps by using a spatial light modulator, with the hope to achieve
the controlled interaction of a few atoms, creating entanglement that can be used in
quantum computation. We also discuss a few limitations related to trap distance
and trap size for the formation of multiple traps. After implementing a control
sequence that allows deterministic loading of the two single atoms, an intensity
correlation measurement is performed for the single photon interference from the
two single atoms.

6.1 From one to few atoms
In 1954, Dicke predicted that the behavior of an ensemble of emitters when

interacting with a quantum mode of light is distinct from that of the individual
emitters [170]. In this picture, the quantum state of an ensemble is better described
by the collective states (super-radiant or sub-radiant), arising from the constructive
or destructive interference of transition pathways. Generally, the discussion is
constrained to an ensemble of atoms having a spatial extent smaller than the
wavelength of light.

For an ensemble of atoms distributed over distances longer than the wavelength
of light, previous theoretical studies have demonstrated that collective emission is
strongly dependent on the geometric arrangement of the emitters [73, 171–173].
With better control over the position and motion of emitters, there are increasing
experimental efforts that investigate the collective radiation in free space, including
cold atomic clouds [174–176], trapped ions [177], and laterally arranged quantum
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dots [178]. An ordered array of optically trapped neutral atoms could also be an
interesting platform for new exploration in this direction.

6.1.1 Wavefront modulation

We trap single atoms in an array of holographic dipole traps formed by a spatial
light modulator (SLM) [179, 180]. Particularly, a phase-modulating liquid-crystal
SLM is employed to imprint a phase profile Φ(x, y) onto the FORT beam, which
initially has a Gaussian amplitude profile E0(x, y). After the FORT beam is focused
down by the aspheric lens, the intensity distribution in the focal plane is then
determined by the squared modulus of the 2D Fourier transform of E0(x, y)eiΦ(x,y),
which is a consequence of Fraunhofer diffraction [181].

To generate a suitable phase pattern for a trap array with arbitrary geometries,
a diverse class of iterative phase retrieval algorithms has been investigated, including
conjugate gradient minimization [182], mixed-region amplitude freedom [183, 184],
and the Gerchberg–Saxton algorithm [185, 186] (refer to [187] for a comparison
of these different techniques). However, in this thesis we mainly focus on the
simplest array geometry containing only a pair of single atoms, without the need
for rearranging the trap position. Therefore, we employ a simpler approach by
directly taking the phase component of the inverse Fourier transform of a Dirac-delta
function at ±d/2 on the image plane (see Fig. 6.1(a)):

Φ(r⃗) = arg
[
F−1[δ(kx − kd

2f , ky) + δ(kx + kd

2f , ky)]
]

= arg [exp (i d2f kx) + exp (−i d2f kx)]

=


0, x ∈ [(2N − 1

2)fλ
d
, (2N + 1

2)fλ
d

] for integer N,

π, x ∈ [(2N + 1
2)fλ

d
, (2N + 3

2)fλ
d

] for integer N,
(6.1)

where d is the trap spacing, k is the wave number of the dipole light, and f is the
focal length of the lens, (kx, ky) corresponds to the angular spectrum of the input
field with (kx, ky) = (kx′/f, ky′/f) for (x′, y′) the coordinate on the image plane,
and r⃗ = (x, y) is the coordinate on the object plane.

This phase transformation Φ(r⃗) is effectively a square wave function with a period
of 2fλ/d. Notably, this phase pattern is equivalent to a diffraction grating with
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Figure 6.1: Phase patterns employed on the spatial light modulator (SLM). (a) The
grating pattern following Eqn. 6.1 to create two traps. (b) The corrective phase
pattern, provided by the SLM manufacturer, to address non-flatness on the surface
of the SLM. (c) The Fresnel lens pattern to correct for chromatic shift, as described
in Chapter 2.3.2. (d) The combined phase pattern composed of the previous three
contributions.

a grating period of 2fλ/d, or equivalently first-order diffraction angles of ±d/2f .
Due to the simplicity of this phase function, this technique can also be implemented
using physical phase plates or diffraction gratings.

Ideally, the phase pattern employed above contains only the odd diffraction orders,
with diffraction efficiencies of 4/π2 ≈ 40.5 %, 4/(3π)2 ≈ 4.5 %, and 4/(5π)2 ≈ 1.6 %
for the diffraction of first, third, and fifth order, respectively. Accounting for losses on
the SLM, we find that we typically need an input FORT beam power of about 20 mW
for trap depth of kB × 1 mK in the two-atom configuration. Compared with the
previous demonstration in [179] that requires about 5N mW of power for N dipole
traps with the same trap depth, our system utilizes roughly twice as much optical
power. This difference can be attributed to a larger focused beam profile and higher
optical losses. Nevertheless, the optical power requirement still remains reasonable,
even for commercial 850-nm laser diodes. In fact, we can easily increase the trap
number to N = 4 in a square array configuration with the available optical power
in the FORT beam. We restrict to the case of N = 2 to ensure high fluorescence
collection for both the single atoms into single mode fiber and also deterministic
loading of the trap array.

6.1.2 Implementation

Figure 6.2 shows the schematic for the optical setup to trap atoms in a tweezer
array. The collimated FORT beam (horizontally polarized) with a beam radius of
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camera
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Figure 6.2: Optical setup for interfacing a pair of single atoms with light. A pair
of single atoms are held by the diffracted tweezer array focused down by the high
NA lens. The scattering of individual atoms is coupled into a single-mode fiber.
DM: dichroic mirror, FM: flip mirror, SLM: spatial light modulator, PBS: polarizing
beamsplitter, APD: avalanche photodetector, UHV: ultra-high vacuum.

2.7 mm illuminates the SLM that has an active area of 12.8×12.8 mm2 and a spatial
resolution of 512×512 pixels. The SLM then imprints a phase pattern to form a
pair of traps following Eqn. 6.1, as well as the Fresnel lens hologram to correct for
the achromatic shift as discussed in Chapter 2.3.2.

Next, the modulated FORT beam is focused down by the high NA aspheric lens,
after a propagation distance of about 1 m between the SLM and the aspheric lens.
This relatively long propagation distance is a consequence of the optical elements in
place for the collection of 780-nm atomic fluorescence. This can be detrimental for
more complex trap geometries due to beam clippings and aberrations for off-axis
beams focusing on the aspheric lens. While this problem is not yet a limitation for
a simple two-atom trap, for future iterations we would have to consider designs such
as a 4f optical system that conjugates the SLM plane with the aspheric lens to
avoid this problem [188].

Here, we collect the scattered fluorescence from single atoms in each dipole trap
into individual single-mode fibers for APD detection. Accounting for the collection
mode of the collimating lens for the single-mode fiber, we expect there is less than 1 %
scattered light collected by the other single-mode fiber for atomic spacing d > 1.5λ.
Hence, this arrangement enables the spatial resolution of the two traps by the two
APDs.
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Figure 6.3: Distance between the pair of single atoms (d) as a function of wavefront
modulation period (Λ). The blue solid line is the calculated trap separation following
Eqn. 6.1, assuming the input field is a plane wave. The atomic spacing starts to
deviate from the expected results for a modulation period longer than the FORT
beam diameter 2w = 5.4 mm. Inset: Exemplary camera image of two single atoms
at Λ = 5.5 mm, integrated over 1 s. We perform a Gaussian fit to the images to
extract the atomic spacing d.

Measuring atomic spacing

In this first part of the experiment, we would like to confirm that the atomic
spacing d varies inversely with the SLM modulation period Λ according to Eqn. 6.1.
To do this, we overlap the magneto-optical trap with the SLM-diffracted trap array,
allowing the loading of single atoms. We then record fluorescence images using the
single-photon imaging camera along the lens axis with an exposure time of 1 s. This
exposure time is chosen to be much longer than the reciprocal of the loading rate
(on the order of 100 ms) to ensure atom loadings and fluorescence scattering from
both of the traps. Next, we extract the atomic spacing from the two fluorescence
centroids by performing a Gaussian fit to the camera image. We repeat this at
various modulation periods applied to the SLM.

Figure 6.3 shows the deduced atomic spacing as a function of imprinted grating
modulation period Λ. The blue solid line represents the theoretical value for the trap
spacing calculated from d = 2fλ/Λ. For Λ ≤ 5 mm, the measured atomic spacing
agrees very well with the theoretical value, with a discrepancy of less than 5 %.
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Notably, there is an increasing discrepancy between the theoretical values and
the measured values for Λ > 5 mm, close to the beam diameter of the collimated
FORT beam (2win = 5.4 mm). This can be understood as the FORT beam can no
longer experience the “periodicity” of the diffraction grating imprinted by the SLM,
limited by its finite beam size.

The electric field distribution in the image plane also offers an intuitive explana-
tion for this observation. We can approximate the electric field in the focal plane
by

E(x′, y′) = 2E0

π
e−y′2/w2

f

(
e−(x′− fλ

Λ )2/w2
f + e−(x′+ fλ

Λ )2/w2
f

)
, (6.2)

where (x′, y′) is the coordinate on the image plane, wf is the focal beam waist,
and 2E0/π relates to the diffraction efficiency from an initial Gaussian with a field
amplitude of E0. For fλ/Λ ≫ wf , the two Gaussian profiles are approximately
centered at ±fλ/Λ, leading to d = 2fλ/Λ. On the other hand, for fλ/Λ ≲ wf , the
two Gaussian profiles will interfere constructively around x′ = 0, shifting the points
of maximal intensity closer to x′ = 0. The constructive interference arises from the
choice of the phase pattern in Eqn. 6.1, with the assumption that the dipole light
fields are in phase. As a result, the trap spacing d will be smaller than the expected
value fλ/Λ for larger Λ, in agreement with the behavior we see in Fig. 6.3.

From the expression in Eqn. 6.2, we can show that the pair of traps cannot be
formed for Λ ≥

√
2πwin ≈ 12 mm due to diffraction limit. However, experimentally

we are not able to observe the loading of two atoms starting from Λ > 8 mm. This
is mostly because the potential barrier between the two traps is also decreasing for
larger Λ. For the potential barrier smaller than the MOT temperature (typically
around 100µK), the single atoms can have enough kinetic energy to escape the
potential barrier, leading to the collisional blockade of both of the two dipole traps.

6.1.3 Triggering of a pair of single atoms

In a typical experimental run, we choose to operate at a modulation period Λ
of 5.5 mm, corresponding to an atomic spacing of d ≈ 3.1µm to avoid problems
associated with small atomic spacing (more details are described in Chapter 6.1.4).
With this parameter, we can ensure successful trapping of single atoms in both
the two dipole traps by experimental sequence branching conditioned on the APD
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Figure 6.4: Two-dimensional histogram of detected events on APD1 and APD2 over
40 ms, which spatially resolve the cooling fluorescence scattered by single atoms
in trap 1 and trap 2, respectively. We observe four clusters in the photodetection
distribution, which corresponds to the cases where two single atoms are present
in both traps (high/high), one atom in trap 1 and no atom in trap 2 (high/low),
no atom in trap 1 and one atom in trap 2 (low/high), and no atom in both traps
(low/low). The dotted lines indicate the triggering threshold for single atom loading
events.

counts, similar to Chapter 2.3.3.
We start with forming a cold cloud of 87Rb atoms using a MOT, which overlaps

with the SLM-diffracted dipole trap array. Once an atom is loaded into each dipole
trap of the array, the count rate on the associated single-mode fiber-coupled APD
will increase from 200 s−1 (APD dark count rate) to 4000 s−1. This fluorescence is
collected by our experimental control system during a qualifying time window of 40
ms.

Figure 6.4 shows the typical two-dimensional histogram of the cooling fluorescence
from the pair of single atoms, as seen on the two APDs. We observe four clusters in
the photodetection distribution, which corresponds to the cases where two single
atoms are present in both traps (high/high), one atom in trap 1 and no atom in trap
2 (high/low), no atom in trap 1 and one atom in trap 2 (low/high), and no atom in
both traps (low/low). In the following parts, we choose a triggering threshold of
1500 s−1 (60 counts in 40 ms) on both two APDs to confirm the presence of the pair
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of single atoms.

6.1.4 Problems with small atomic spacing

For an atomic spacing sufficiently small (≈ λ), it might become feasible to
observe mechanisms related to dipole-dipole coupling between single atoms. For
that reason, we started operating the trap array with the smallest atomic spacing we
can achieve (≈ 2λ), employing a SLM modulation period Λ of 8 mm. Unfortunately,
instead of observing the desired dipole-dipole coupling, we encountered a number of
unexpected effects stemming from imperfections in atom trapping. We document
here the problems that arise from operating the trap array in the regime where the
atomic spacing is close to the trap beam waist.

Atom hopping

We notice that whenever we initialize the system to have exactly one single
atom in each dipole trap, it is very likely to lose both single atoms after a probing
sequence. This phenomenon becomes particularly pronounced when the frequency
of the probe beam is set to be on-resonant with the atomic transition. We suspect
that this is caused by a single atom escaping from one dipole trap to the other
dipole trap during the probing process. Consequently, a light-induced collisional
blockade [84] will result in two-atom loss.

To confirm this hypothesis, we run the following experimental sequence. We
prepare the system to have one atom in one of the traps (trap 1), and no atom in
the other trap (trap 2). Both dipole traps are set to have the same trap depth of
U0 = kB × 0.88 mK, separated by 1.5µm. After a PGC sequence, we apply a bias
magnetic field to remove the Zeeman degeneracy. The atom is then optically pumped
to the F = 2,mF = −2 Zeeman sublevel, followed by a 600-µs nearly resonant probe
beam orthogonal to the optical axis. Finally, we switch on the MOT cooling and
repumper beams and record the fluorescence scattering on the fiber-coupled APDs
to detect the presence of the atom in both traps.

The probability of finding an atom in either trap for varying probe detuning
is shown in Fig. 6.5. For the probe frequency that is detuned far away from the
atomic resonance (∆p ≫ Γ), the single atom remains in trap 1 after the illumination.
Moreover, at resonance, we notice a decrease in the probability of the atom staying

109



CHAPTER 6. ARRAY OF TWO SINGLE ATOMS

 0

 50

 100

-10 -5  0  5  10

P
ro

b
a
b
ili

ty
 o

f 
fi
n
d
in

g
 a

n
 a

to
m

 (
%

)

Probe detuning (MHz)

Trap 1
Trap 2

Figure 6.5: Probability of detecting a single atom in either dipole trap after illu-
mination with a nearly resonant probe beam. We prepare a single atom in trap 1
and no atom in trap 2. The atom is then illuminated with a weak probe beam with
varying detunings for 600µs. We observe that there is a high chance (21 ± 2%) for
the atom to be transferred into trap 2 from trap 1 at the end of the probing process,
due to recoil heating of the probe field. Error bars represent the standard error of
binomial statistics accumulated from around 1200 repeated sequences.

in trap 1. Interestingly, the loss of the single atom in trap 1 is always correlated with
the presence of an atom in trap 2, indicating that the atom has been transferred
into trap 2 from trap 1.

The observation above can be explained by recoil heating induced by the probe
beam. We consider the atom to be trapped in a symmetric double-well potential with
a trap depth of U0 and a potential barrier of ∆U . For N scattering events, the atomic
temperature follows T = T0 +NTr, where T0 is the initial atomic temperature and
Tr is the recoil temperature, given by Tr = ℏ2k2/mkB ≈ 0.36µK for mass of 87Rb
atom m = 1.45 × 10−25 kg and 780-nm light. Assuming a Boltzmann distribution,
the probability of a single atom having energy higher than the potential barrier can
be calculated from

P (E > −U0 + ∆U) = e−U0/kBT

kBT

∫ ∞

−U0+∆U
e−E/kBTdE

= e−∆U/kBT . (6.3)

With the fluorescence scattering rate of 3×105 s−1 estimated from the photon de-
tection rate on the APD, we infer that the potential barrier is approximately
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∆U = kB × (120 ± 20)µK. We anticipate that this measurement can be utilized as a
technique to discern sub-wavelength features in a tightly focused optical trap.

An interesting question we can ask is how close are we to observing a quantum
tunneling effect of a single atom between two traps. To explore this phenomenon, we
examine the tunneling coupling J = ⟨ψ1| Ĥsp |ψ2⟩ /ℏ, where ψ1 (ψ2) is the localized
state in trap 1 (2), and Ĥsp is the single particle Hamiltonian containing kinetic and
double-well potential energy terms. This concept is a standard exercise in variational
methods in quantum mechanics textbooks [189, 190]. For an atom with mass m in
a symmetric double well potential with a trap spacing of d and trap barrier of ∆U ,
the tunneling coupling J is given by

J ≈ 16√
π

(
2 ∆U3

ℏ2md2

) 1
4

e−(
√

2m ∆Ud)/(6ℏ) . (6.4)

Unfortunately, with the current experimental parameters (∆U ≈ kB×120µK and d =
1.5µm), the tunneling coupling J/(2π) is expected to be less than 10−16 Hz, indicating
that the tunneling effect occurs at a small probability within the experimental
timescale. To address this limitation, we would have to implement an adiabatic
ramp down of the dipole beam power to achieve a trap barrier on the order of
kB × 1µK for a tunneling coupling of J/(2π) ≈ 400 Hz, as demonstrated in a
previous study [191].

Formation of an additional dipole trap

The issue of trap hopping induced by heating, as observed in the previous part,
can be circumvented by increasing the FORT beam power to elevate the potential
barrier between the two dipole traps. Unexpectedly, we observe that this approach
actually introduces a new problem: the formation of an additional out-of-focal-plane
dipole trap.

Similar to the previous part, we operate the double well trap at a spacing
of 1.5µm. However, we increase the trap depth of the individual dipole trap to
U0 = kB × 2.4 mK, which corresponds to a potential barrier of ∆U = kB × 600µK.
With this increased trap power, the trap hopping problem is significantly suppressed.
As we attempt to detect the presence of the two atoms in the dipole traps based on
cooling fluorescence counts, we occasionally detect an atom loading with a lower
scattering rate (1500 counts/s compared to the expected 5000 counts/s). Another
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Figure 6.6: Calculated intensity profile around the focus using the trapping parame-
ters. Contour lines represent normalized intensities ranging from 0.1 to 0.9, relative
to the maximum intensity in the graph. Here, the optical axis aligns with the z
direction and the x-axis refers to the radial direction orthogonal to the optical axis.
The tweezer beam array interferes constructively at about 5µm behind the focal
plane, forming another local minimum in the dipole potential field.

peculiar observation is that this atom loading with a lower scattering rate appears
in both the single-mode fiber-coupled APDs.

This phenomenon has troubled us for quite some time. Initially, we suspected
that these atom loadings might be linked to classes of single atoms with kinetic
energy higher than the potential barrier, leading to a single atom moving between
the two dipole traps. However, this seems highly improbable given the atomic
temperature inferred from a release-recapture measurement. Additionally, the
polarization gradient cooling does not appear to have any impact on the observed
behavior.

We finally have a better understanding of this issue after we investigate the
atomic fluorescence along the optical axis z. To do this, we displace the imaging
lens before the camera to image the atomic fluorescence from a variable object plane.
We observe single atoms trapped at approximately z = 5µm away from the focal
plane. Further examination also validates that single atoms in this additional dipole
trap correlate with the atom loading event with a lower scattering rate.

We speculate that this is caused by constructive interference of the diffracted
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trapping beam. To confirm this conjecture, we perform a calculation for the trapping
light intensity under paraxial approximation around the focal region, as shown in
Fig. 6.6. Notably, the density plot for the trapping beam intensity profile reveals
that a new intensity maximum is formed about 5µm away from the focal plane, in
agreement with our observation. This local maximum can reach approximately 90 %
of the peak intensity observed for the pair of dipole traps.

Using ray optics, we can demonstrate that this constructively interfering spot is
in fact the image of the SLM plane formed through the aspheric lens. Consequently,
the position of this spot is determined by the distance between the SLM and the
aspheric lens L. The most direct method to eliminate this additional spot is to shift
this spot significantly away (a few Rayleigh ranges away) from the dipole trap plane
by reducing L. This would require positioning the SLM very close to the vacuum
chamber, which is not very feasible due to the presence of existing fluorescence
collection optics. Another alternative would be to place the SLM in a 4f optical
configuration to conjugate the SLM plane to the aspheric lens plane [188]. It is also
possible to bypass this problem by implementing a more complex phase modulation
calculated from a multiplane Gerberch-Saxton algorithm [192].

6.2 Towards two-atom entanglement
The experimental setup we have here closely resembles what some previous

proposals suggest to create entangled atomic states [193]. We consider a pair of
atoms (denoted as 1 and 2) described by a three-level system, with an upper level
|e⟩ connecting two long-lived ground states |g′⟩ and |g⟩, as presented in Fig. 6.7(a).
An atom in the |e⟩ upper level can decay to the |g⟩ state and |g′⟩ state by emitting a
photon with probability p and 1 − p, respectively. The scheme starts from preparing
both the atoms in the state |g′, g′⟩. We then apply an excitation on the transition
|g′⟩ → |e⟩, followed by a probabilistic spontaneous decay of a single photon on the
|e⟩ → |g⟩ transition. The state of each atom and the photonic mode associated with
the |e⟩ → |g⟩ transition can be written as

|ψj⟩ =
√

1 − p |g′
j, 0⟩ + √

p |gj, 1⟩ , (6.5)
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(a) (b)

APD+

Atom 1 BS

Atom 2

APD-

Figure 6.7: (a) Levels and transitions used for generating entanglement between
two atoms by a single photon detection. (b) Schematic of the experimental setup
for entanglement generation by a single photon detection. Fluorescence emitted
by the two atoms is overlapped using a beamsplitter (BS) before the detection on
an avalanche photodetector (APD). A phase shifter ϕ represents the relative phase
acquired by the spontaneously emitted photons on their way to the beamsplitter,
which sets the phase of the two-atom entangled state (|gg′⟩ + eiϕ |g′g⟩)/

√
2.

where j = 1, 2 is the index for the atom. The photon emitted from the |e⟩ → |g′⟩
transition is disregarded here by choice.

For instance, we can choose the two ground states to be Zeeman sublevels
of the 52S1/2 hyperfine ground level of 87Rb atom, |g′⟩ = |F = 2,mF = −2⟩ and
|g⟩ = |F = 2,mF = −1⟩ without loss of generality. The excited state |e⟩ can be
chosen to be |F ′ = 3,mF ′ = −2⟩ of the 52P3/2 manifold. Consequently, we suppose
the emitted photons are collected along the quantization axis, π-polarized light from
the |e⟩ → |g′⟩ transition will not be collected and can be traced out.

Now if we look at the total state of the full system of two atoms and light mode,
accounting for the relative phase ϕ acquired by the spontaneously emitted photons,
we have

|ψtotal⟩ = (
√

1 − p |g′
1, 0⟩ + √

p |g1, 1⟩) ⊗ (
√

1 − p |g′
2, 0⟩ + eiϕ√

p |g2, 1⟩)

= (1 − p) |g′
1, g

′
2, 0⟩ +

√
p(1 − p) |g1, g

′
2, 1⟩

+
√
p(1 − p)eiϕ |g′

1, g2, 1⟩ + peiϕ |g1, g2, 2⟩ . (6.6)

Indistinguishability of the photons from the two atoms can be achieved by
overlapping their corresponding spatial modes with a beam splitter (see Fig. 6.7(b)).
Consequently, by post-selecting the cases where a single photon is detected on the
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UHV

PBS HWP

PBS

50:50

  BS

APD1

APD2

Figure 6.8: Optical setup to measure intensity correlation of single photon interfer-
ence from two single atoms. A pair of single atoms are illuminated with continuous
cooling light. The cooling fluorescence is collected by the high NA lenses and
combined by a 50:50 beamsplitter for an intensity correlation measurement. BS:
beamsplitter, HWP: half-wave plate, PBS: polarizing beamsplitter, APD: avalanche
photodetector, UHV: ultra-high vacuum.
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Figure 6.9: Experimental sequence for measuring the intensity correlation of single
photon interference from two single atoms. The pair of single atoms is illuminated
with weak cooling beams red-detuned by 50 MHz for a duration of 40 ms, during which
an intensity correlation measurement is performed with the atomic fluorescence.

APDs, the two-atom state is projected onto an entangled state:

|ψtotal⟩ = 1
2
(
|g1, g

′
2⟩ + eiϕ |g′

1, g2⟩
)
. (6.7)

Such an entanglement scheme was first demonstrated using a pair of Barium ions
in [194]. We are interested in assessing the feasibility of implementing a similar
scheme with a pair of optically trapped 87Rb atoms.
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6.2.1 Preliminary coalescence measurement

One important criterion for the entanglement scheme mentioned above, as well
as many quantum processing applications, hinges on the indistinguishability of the
emitted single photons. In this part, we attempt to measure the indistinguishability
of the fluorescence scattered by a pair of single atoms by using the coalescence
phenomenon [195]. In particular, two single photons with the same spectral, spatial,
and polarization properties will bunch together when arriving simultaneously on
two different input ports of a beam splitter. This in turn will manifest as a drop in
the coincidence rate at the outputs of a beam splitter in a two-photon interference
Hong-Ou-Mandel measurement.

Figure 6.8 shows the optical setup to measure the intensity correlation of single
photon interference from two single atoms. Upon successful trapping of a pair of
single atoms in the dipole trap array from the MOT, we start with 10 ms of PGC to
bring down the atomic temperature. We then illuminate the pair of single atoms
with the weak off-resonant (−50 MHz detuned from the 52S1/2 F = 2 ↔ 52P3/2

F ′ = 3 transition) cooling beams for a duration of 40 ms. The scattered light
from each single atom is then projected into horizontal polarizations (in parallel)
before being combined with a 50 : 50 beam splitter. The outputs of the beam
splitter are then directed to APDs for intensity correlation measurements. To ensure
the distinguishability of the scattered photons from the atom pair, we repeat the
measurement again after rotating the polarization of one beam path to be vertical
using a half-wave plate (orthogonal polarizations). The experimental sequence is
depicted in Fig. 6.9.

The results of the second-order intensity correlation measurements are shown
in Fig. 6.10. Both of the two measurements are integrated over 12 hours for an
average coincidence count of 90 in time bins of 1-ns width. We immediately observe
an oscillatory pattern from the intensity correlations due to Rabi oscillation between
the hyperfine states 52S1/2 F = 2 and 52P3/2 F

′ = 3. We infer a Rabi frequency of
around 2π×55 MHz and 2π×50 MHz for the parallel and orthogonal polarizations,
respectively. This is because we lower the cooling beam intensity from measurement
(a) to (b), as we discover that the cooling beam power used in measurement (a) is
not optimal. The cooling beam power is high enough to potentially cause recoil
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Figure 6.10: (a) Correlation of the interference for orthogonal polarizations. We
observe a g(2)

⊥ (τ = 0) = 0.68 ± 0.09. (b) Correlation of the interference for parallel
polarizations. A reduction in coincidences around τ = 0 is observed for parallel
polarizations with g

(2)
∥ (τ = 0) = 0.38 ± 0.09.

heating and consequently lower the trap lifetime.
In theory, given that the scattering of single photons from the two atoms is

independent, the expected g
(2)
⊥ (τ = 0) is 0.5 (the two photons are uncorrelated).

When the two photons are projected to the same polarization mode, the expected
g

(2)
∥ (τ = 0) is 0, since they should be completely indistinguishable. This allows the

two-photon interference visibility to be defined as [196]

V =
g

(2)
⊥ (τ = 0) − g

(2)
∥ (τ = 0)

g
(2)
⊥ (τ = 0)

, (6.8)

which describes the mode overlap of the single photons at the two input ports of
the beam splitter.

In our measurements, the anti-bunching dip for parallel polarizations (g(2)
∥ (τ =

0) = 0.38 ± 0.09) is indeed lower than that for orthogonal polarizations (g(2)
∥ (τ =

0) = 0.68 ± 0.09), indicating that photons from the two single atoms have a nonzero
coalescence probability. However, the measured g(2)(τ = 0) for both cases are
significantly higher than the expected values.
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One reason for this deviation can be attributed to the dark counts of the APDs.
Dark counts are uncorrelated with other counts, so their effect can be determined
from the correlation of detector signals Di, given by Di = Ii + di where Ii and di

are the fluorescence signals and the dark counts from detector i. By subtracting
the effect of dark counts from the data, the resulting g(2) values for the fluorescence
signals are obtained. This yields g(2)

∥ (τ = 0) as 0.24 ± 0.11 and g
(2)
⊥ (τ = 0) as

0.55 ± 0.12, which aligns more closely with the expected values. Consequently, this
results in a two-photon interference visibility of V = 0.56 ± 0.22.

For the parallel polarizations, the imperfect coalescence can be caused by the
difference in the spectral profiles of the cooling fluorescence. Under the illumination
of an off-resonant cooling light, the power spectrum of the scattered fluorescence will
have a three-peak structure (refer to Chapter 3.2 for more discussions on Mollow
triplet) centered at the cooling beam frequency (ωcool) and roughly one detuning ∆
away from the cooling beam frequency (ωcool ± ∆). Suppose that the trap depth for
the two dipole traps is slightly different due to asymmetry in the focusing optics,
the detunings will be different for the two single atoms, leading to a mismatch in
the power spectrum. To mitigate this issue, we can choose a weak near-resonant
light that can help reduce the contributions in the sidebands.

6.3 Summary
In short, we have successfully demonstrated the trapping of single atoms in a pair

of holographic dipole traps. Using a computer-controlled spatial light modulator,
we show the capability to control the distance between the pair of single atoms.
Two challenges arising at short atomic spacings (d = 1.5µm) are investigated,
including the trap hopping induced by atomic thermal motion and the formation of
an additional dipole trap along the optical axis. Finally, we perform a two-photon
interference measurement on the cooling fluorescence scattered by a pair of single
atoms. We confirm the observation of photon coalescence while projecting the photon
polarizations from orthogonal to parallel. Particularly, the second order correlation
function at zero delay g(2)(0) varies from 0.55 ± 0.12 to 0.24 ± 0.11 after subtracting
off the uncorrelated coincidences due to dark counts. This finding indicates that the
single photons scattered by the two single atoms are very much indistinguishable.
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We expect further improvements in the spectral mode matching for light scat-
tered by the two single atoms can further increase the two-photon interference
visibility. This will be crucial for the future exploration of various two-atom entan-
glement schemes based on the detection of single photons, effectively enhancing the
entanglement visibility.
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Chapter 7

Conclusion and Outlook

A single neutral atom held in an optical dipole trap at the focus of a high
numerical aperture (NA) aspheric lens is a highly robust and clean quantum platform
to investigate atom-light interactions at the single photon level. First, the high NA
aspheric lens collects atomic fluorescence efficiently into a single mode fiber, enabling
both the detection of atom trapping and the application of rapid fluorescence-
based techniques for lossless state detection. Furthermore, the high NA aspheric
lens also focuses down incident light to a mode size close to the dipole transition
cross-section, effectively enhancing the probability of a single photon interacting
coherently with the atom. These appealing properties enable us to examine the
emission characteristics of a strongly driven two-level system. We also present
systematic improvements in our free-space single-atom system, addressing aspects
such as qubit coherence, motional control, and the scalability of qubit numbers.

In Chapter 3, using a cycling optical transition of 87Rb atom, we investigate the
simplest form of optical nonlinearity: saturation of a two-level transition, which
results in the emergence of sidebands in the spectral profile of atomic fluorescence.
By imposing a detuning to the driving field, we further demonstrate that pairs
of single photons originating from opposite fluorescence sidebands are temporally
correlated. This discovery may open up novel approaches for the generation of non-
classical light fields for the interface between atomic qubits and photonic quantum
communication channels.

Overcoming qubit coherence limitations has been a persistent challenge in various
quantum computing platforms. Using the magnetically sensitive Zeeman sublevels
in the 87Rb ground state manifold as our qubit states, the dephasing time for
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a superposition state was initially measured to be around 40µs. Through the
implementation of a suitable decoupling protocol, we successfully extended this
coherence time to about 7 ms (Chapter 4). This prolonged coherence time is
particularly crucial for applications involving atom-photon entanglement, as it
preserves the relative phase of the entangled state while the photon is transmitted
over long distances.

Going from a two-level system to a three-level Λ system, the introduction of
an additional energy level and dipole transition grants us greater flexibility in
manipulating a single atom. We study the excitation spectrum of a single atom
interacting with a pair of pump and probe beams, illustrating the phenomenon
of Fano interference (Chapter 5). By exploiting the aforementioned scattering
mechanism to selectively drive the red motional sideband transition, we successfully
achieve cooling of atomic temperature to less than 6µK. This work holds significance
for the longstanding goal [130, 131] of attaining complete control over the position
and motion of an optically trapped neutral atom.

Next, we proceed to implement the deterministic trapping of single atoms in
a holographic dipole trap array in Chapter 6. We show the precise control of the
trap array spacing by varying the wavefront modulation period. To conclude, a two-
photon interference measurement is performed on the cooling fluorescence emitted
by a pair of single atoms, demonstrating the phenomenon of photon coalescence.

With the techniques outlined in this thesis, this marks an ideal starting point
to delve into the realization of practical quantum information protocols. Ongoing
efforts in our research group are directed toward creating entanglement between a
single atom and a single photon. The scheme is as follows [25]: a single atom is
excited to an excited state with a short optical pulse, followed by a spontaneous
decay to multiple ground states. This process leads to the formation of an entangled
state between the polarization of the emitted photon and the ground state sublevels
of the atom. Currently, the generation of the excitation pulse with a temporal
width smaller than 20 ns (full-width half maximum) is ready for implementation.
Measurements are underway to confirm that the excitation probability is close to
unity (π-pulse).

Compared to the recent work reported in [27] showcasing a single photon detection
efficiency of 7.5×10−3 with an APD after an excitation attempt, we anticipate a
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fourfold improvement for our collection system, reaching a detection efficiency of
2.8×10−2. In the same work, the entanglement distribution was limited to 20 km
caused by decoherence of the atomic state. This issue can be overcome with a
decoupling protocol, making transmission loss the sole constraint for long-distance
entanglement distribution.

Regarding the cooling of atomic motion using the Fano interference effect, the
pair of probe and coupling beams implemented in our system currently address only
two dimensions of the atomic motion. We foresee a further reduction in atomic
temperature by employing additional probe beams with wave vectors encompassing
all three directions, potentially reaching the motional ground state.

Another challenge is that the conventional release-recapture technique is only
weakly dependent on the longitudinal motion. Exploring new methods such as
motional sideband resolving Raman spectroscopy [130, 131] or microwave sideband
spectroscopy in a state-dependent trap potential [169] would be necessary to deduce
the mean vibrational number associated with the atomic motion along the optical
axis.

Combined with the holographic dipole trap array system, the ground state
cooling technique opens up new pathways to investigate non-classical properties
related to the atomic motional state. This includes phenomena like the two-atom
Hong-Ou-Mandel interference due to the indistinguishability of single atoms in all
except for their positional degree of freedom [191]. An improved motional control
also motivates the implementation of motional sideband-based two-qubit protocols,
such as the Mølmer–Sørensen gate [197], on an array of neutral atoms for quantum
computing applications.

Another idea is to align more closely with the recent trends in neutral atom
quantum computing platforms. By employing the holographic dipole trap array
with a higher FORT beam power, we can scale up the number of qubits in our
system, approaching the capabilities of state-of-the-art systems with hundreds of
qubits [198]. The major challenge lies in effectively implementing the rearrangement
of atoms and fast qubit operations, particularly two-qubit gates based on Rydberg
excitation while preserving qubit coherence [199].
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