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Overview

● Our BB92 QKD implementation

● Older attacks

● Photodetector vulnerability

● Practical attack on BBM92 for a fiber channel

● 'Faking' the violation of a Bell test



  

QKD with photon pairs: BBM92
Quantum correlations & measurements on both sides 

source for
photon 
pairs

 like BB84, but no trusted random numbers for key

 direct use of quantum randomness for measurement basis

public discussion (sifting, key gen / state estimation)

error correction, privacy amplification

∣− 〉



  

Our reference QKD system

free space link, works even in daylight

● polarization encoding, cw pair source, wavelength 810±3nm
timestamping photoevents

minimal
inclination:
 α = 16°



  

Very gory details
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open code under GPL:
http://code.google.com/p/qcrypto/

http://code.google.com/p/qcrypto/


  

Typical performance

● optical BW:
6.7 nm FWHM

● coincidence
time 2 ns

● receiver
telescope:
100 μrad

● continuous
operation
over 4 days

identified
coincidences

“Alice” detector
events

raw key

final key
(after EC/PA)

Detector events
@ receiver

M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, C.K., NJP 11, 045007 (2009)



  

Detector saturation in daylight
Detector saturation and QBER

● main limit is
detector
saturation, not
QBER due to
accidental
coincidences

● similar for high
bit rate systems

Background rate (uncorrected for detector saturation)

observed background

total QBER



  

receiving side

Field usage, open source

PDC pair source & sender ● System gets simpler and
more robust, low power
consumption (<65W)

● Software is open source (GPLv2):
http://code.google.com/p/qcrypto

Open hardware under way

http://code.google.com/p/qcrypto


  

Various practical attacks...

● Too large Hilbert space in practical BB84  - 
  not only multi-photon problems

● Leaking of timing information in classical communication

● Active detector attack



  

BB84: Spectral backdoor

Don't measure polarization, but e.g. color:
The Hilbert Space in your system is larger than it appears

asymptotic
average
information
leakage: <2%

H V - +



  

Timing channel attack I



  

Timing channel attack II

Classical timing information carries fingerprint of detectors:

small detector imbalances may
tell Eve a lot!

ALL,  CK, Optics Express 15, 9388 (2007)



  

Basic photodetector operation

Avalanche photodiodes (APD) are common
“single photon” detectors

breakdown voltage

detection threshold

“CLICK”



  

APD detector vulnerability I

Basic Problem: 

APD saturate and
can be blinded

optical power

de
te

ct
io

n 
ev

en
t 

ra
te

 s
-1

PB

η = 100%

blinding power PB: 1..10 pW 
(corresponding to
106-107 events / sec)

NO CLICK

detection threshold



  

APD vulnerability II

...and forced to give a signal by bright light pulses:

Avalanche diode operates in PIN / normal amplification regime

“CLICK”



  

Hijacking one detector...

Combined to attack scheme by sending 'fake states'

of classical light:

PB

● Detector is quiet

blinding level  P1>PB  (few pW)

● Detector can be forced to a click
at well-defined time

P2>PT   (few mW)

P1

P1

P2
PT

threshold

Fake state attack : Vadim  Makarov,   NJP 11, 065003 (2009)



  

Hijacking the 'measurement'

● This works with detector pairs as well:

Choose unpolarized / circularly polarized P1
and different linear polarizations to fake
a 'click'

Light: “H” detector: “V” detector:

>2 PB no click no click

+ click no click

      + no click click



  

Why stop at two....

Control of a passive base choice QKD detector:

● Choose σ+ polarization
for blinding

● Choose power for
each fake pulse
such that one detector 
fires, the others remain
below threshold

● Eve now has complete control over
this detection scheme....



  

Four detector attack

Light: “H” “V” “+45” “-45”

>4 PB no click no click no click no click

+ click no click no click no click

      + no click no click click no click

● Choose pule amplitudes above +45 threshold,
but below H/V threshold   -- ideally 1- √2/2 margin for P2

“H”

“V”

“+45”

“-45”

“faked state”

our polarization
detector



  

Eve's intercept-resend kit

Eve's single photon
    measurement

laser
diodes attenuators

...from Alice to Bob

timestamp unit to record time & polarization
for key extraction

reference
clock

fiber
combiner

polarization
control



  

Eve's insertion timing

Coincidence timing histograms of a working system

without Eve
intercept

with Eve
intercept

No resolvable influence on detector signal timing (<100 ps jitter)

Insertion delay ~10 nsec



  

Full intercept/resent scheme

single mode optical
fiber channel

single mode optical
fiber channel

(wireless LAN)



  

Layout of the plot

“Realistic” fiber link across the Science faculty @ NUS



  

Results for Alice & Bob

● reasonable photo
detection rates on
both sides (includes
transmission loss)

● reasonable pair rate
and raw key rate
around 1.1 kcps

● no spurious pulses

● reasonable error ratio
for this source allows
to extract 500 bits/sec
key after PA / EC



  

Attack Results I

A real-time display of events between Eve and Bob:

H

-45°
V

+45°

● About 97%-99% of Eve clicks are transferred to Bob

● Eve can identify successful detections by Bob from timing 
information (classical channel intercept)

● Eve knows correctly identified pairs due to losses 
(classical channel intercept)

● Eve knows all detector outcomes of Bob



  

Attack Results II

● Correlation between Eve and Bob's result (the hijacked 
receiver) is 100%

● Eve has Bob's complete raw key

● By eavesdropping the classical communication in error 
correction/privacy amplification, Eve can reconstruct the 
secret key



  

Does active base choice help?

● Correlation between Eve's command and Bob results is 100%

● Bob's probability of getting Eve's base choice correct is 50%

Presence of Eve looks like 50% loss (no big help)



  

Do other protocols help?

1' /1' 2' /2'

measurement
device B

measurement
device A

1 /1 2 /2

For proper settings 1, 2, 1', 2' and state         : S=±22∣− 〉

 Estimate quantitatively the knowledge of Eve of raw key
between A and B from S:

 No fingerprint problems of photons due to side channels
A. Acin, N. Brunner, N. Gisin,S. Massar, S. Pironio, V. Scarani, PRL 98, 230501 (2007)

I E S =h 1S 2/4−1
2 

Device-independent / Ekert-91 protocol idea



  

Implementation attempt

● {H,V; H',V'} coincidences key generation

● {H,V,+,-;H”,V”,+”,-”} coincidences CHSH Bell test

● low QBER with existing simple source

H
V

+

-

H'

V'
H”

V”

+”

-”

● use almost same kit:

A. Ling, M. Peloso, I. Marcikic, A. Lamas-Linares, V. Scarani, C.K., Phys. Rev. A 78, 020301(2008)



  

Faking Violation of a Bell ineq

core part of device-independent QKD protocol

● Alice & Bob will see “programmed” correlations in 25% of the
cases (base match on both sides), rest nothing

● Alice and Bob cannot distinguish from lossy line....

● We programmed (and found)  CHSH results from S = -4 .... 4
with active choice



  

What is going on??

How can device-independent break down?

● Losses in CHSH are removed by post-selecting pair
observations using a fair sampling assumption

● Current pair sources (η = 70%)  and detectors (η = 50% for
non-cryogenic ones)

● Eve hides behind losses of transmission line. Best guess:
optical fiber and ideal (η = 100%) detectors, active base choice:
At 0.2dB/km@1550nm,  T = 25% for dist = 30 km

● Only very short distances possible with current detectors



  

Can this be fixed ?

Yes, of course.

● Monitor total intensity with a separate, non-saturable  
photodetector (PIN diode)

Blinding power and bright pulses are much brighter than usual 
photon signal

● Monitor the state of APD's by looking at their voltage, asserting 
'detector readiness'

detector OK

detector NOT OK



  

Is this a “good” fix....?

● Are there detectors / detector concepts which are not 
susceptible to such or similar attacks?

● Do we have other practical attacks?

● Will all practical implementations always be potentially bad 
implementations of a theoretically secure protocol?

● Let's leave Hilbert space and have independent 
challenge/assessments of security claims

● What do we offer in comparison to classical key exchange 
devices like tamper-safe devices? Is QKD just an elegant 
version of such a device?

...of a “Bad Implementation” ??

Valerio Scarani, C.K.,   arxiv:0906.4547



  

Thank You!

Group:
http://qoptics.quantumlah.org/lah/

CQT Graduate program:
http://cqtphd.quantumlah.org

Team members NTNU Trondheim
Vadim Makarov
Qin Liu

Team members CQT Singapore
Ilja Gerhardt
Matt Peloso
Caleb Ho
Antia Lamas-Linares
Valerio Scarani, C.K.

http://qoptics.quantumlah.org/lah/


  

Clock synchronization I

No dedicated hardware, use correlations in SPDC 

signal

background

u= f A− f B/ f A=0

u≠0

A

B

B

● find ΔT to 10-9

accuracy via
tiered CCF

● Δu and  ΔT
unknown

f B≠ f A



  

Clock synchronization II
● Step 1: Find “coarse” time difference in short interval via peak in

cross-correlation function

sample 1 sample 2

CCF(τ) CCF(τ)

sample detection events over
two short periodes 1 and 2

find timing difference ΔT in
both intervals with coarse
timing resolution δT

typical values:

   ΔTA = 250 ms
   δT = 2...20 μs
 
   need δT = 2 ns



  

Clock synchronization III
● Step 2: Follow short timing differences in large intervals δt

Take time differences Δt of
pairs in time intervals δT...

....and remove neighbors 
     with too different Δt 

● Step 3: Extract fine time offset part ΔT and relative frequency
difference Δu from residual difference distribution

Works for δT/ΔT = 10-9, Δu = 10-4,  up to Sig/BG = 1/100

C. Ho, A. Lamas-Linares,  C. Kurtsiefer,  NJP 11, 045011 (2009)
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