

Phase shift of a weak coherent beam by a single atom

Syed Abdullah Aljunid, Gleb Maslennikov, Tey Meng Khoon, Brenda Chng, Christian Kurtsiefer

<u>Indinto to</u>
Chen Zilong
Florian Huber
Lee Jianwei
Timothy Liew

Thanks to

Valerio Scarani

Funded by

Hosted by

• Motivation for the experiment

• Theoretical description

• Experiment and Results

- Quantify interaction of a two-level atom with light
- Strong interaction without a cavity.

Quantifying Interaction

Scattering Ratio

$$R_{\rm scat} = \frac{P_{\rm scat}}{P_{\rm in}}$$

Quantifying Interaction

Scattering Ratio

$$R_{\rm scat} = \frac{P_{\rm scat}}{P_{\rm in}}$$

Transmission

$$T = \left| \vec{E}_{\text{out}} \right|^2 / \left| \vec{E}_{\text{in}} \right|^2$$

Phase shift

$$\delta\phi = \arg(\vec{E}_{\rm out} \cdot \vec{E}_{\rm in})$$

Atom-Light Interaction

Weak excitation, and on-resonant input light

$$\vec{E}_{out} = \vec{E}_{in} + \vec{E}_{scat}$$

Weak excitation, and on-resonant input light

 $\vec{E}_{out} = \vec{E}_{in} + \vec{E}_{scat}$ (On axis) = $\vec{E}_{in} \left(1 - \frac{R_{scat}}{2} \frac{i\Gamma}{2\Delta + i\Gamma} \right)$ Γ : natural linewidth Δ : detuning

 $R_{\rm sc} = \frac{3}{4u^3} \,\mathrm{e}^{2/u^2} \left[\Gamma\left(-\frac{1}{4}, \frac{1}{u^2}\right) + u\Gamma\left(\frac{1}{4}, \frac{1}{u^2}\right) \right]^2$

Closed expression for focused Gaussian beam

M. K. Tey, et. al. New J. Phys. 11 (2009) 043011 G. Zumofen, et. al., Phys. Rev. Lett. 101, 180404 (2008)

Centre for Quantum Technologies Strong Interaction

 $R_{\rm sc} = \frac{3}{4u^3} \,\mathrm{e}^{2/u^2} \left[\Gamma\left(-\frac{1}{4}, \frac{1}{u^2}\right) + u\,\Gamma\left(\frac{1}{4}, \frac{1}{u^2}\right) \right]^2$

Closed expression for focused Gaussian beam

of Singapore

M. K. Tey, et. al. New J. Phys. 11 (2009) 043011 G. Zumofen, et. al., Phys. Rev. Lett. 101, 180404 (2008)

Centre for Ouantum Technologies Experimental Setup

. . .

UHV chamber Laser beams for MOT

Centre for Quantum Technologies Experimental Setup

. . .

UHV chamber Laser beams for MOT AL AL DM1 $\lambda/4$ $\lambda/2$ 980 nm Dipole trap beam

Experimental Setup

Experimental Setup

Experimental Setup

Quantum Technologies Experimental Setup

Mach-Zehnder interferometer.

$$\Delta \phi = \arccos\left(\frac{P_c - P_d}{P_c + P_d}\right)$$

Mach-Zehnder interferometer.

$$\Delta \phi = \arccos\left(\frac{P_c - P_d}{P_c + P_d}\right)$$

$$\Delta \phi' = \arccos\left(\frac{P_{c'} - P_{d'}}{\left(P_c + P_d\right)\sqrt{T}}\right) \qquad ; T = \frac{2(P_{c'} + P_d)}{\left(P_c + P_d\right)\sqrt{T}}$$

$$\delta\phi = \Delta\phi' - \Delta\phi$$

Transmission of

 (0.9 ± 0.2) ° at ~ $\Gamma/2$

Theoretical

Transmission: 84%

max phase shift: 2.3°

• Strong interaction of light with a single atom can be observed by simple focusing.

• 0.9° phase shift of a weak coherent beam observed together with 93.9% transmission.

• Strong interaction of light with a single atom can be observed by simple focusing.

• 0.9° phase shift of a weak coherent beam observed together with 93.9% transmission.

Thank You & The End

Antibunching in single atom fluorescence

