Bell tests with Entangled Photons – what is left?

AQIS'15 satellite conference KIAS, Seoul, 28-30 August 2015

Christian Kurtsiefer

Big News on the arXiv:

	Simons Foundation hember institutions
arXiv.org > quant-ph > arXiv:1508.05949	(<u>Help Advanced search</u>) I papers → Go!
Quantum Physics Downloa	ad:
Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km	nats
B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S. Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau, R. Hanson (Submitted on 24 Aug 2015)	/se context: > 1508
For more than 80 years, the counterintuitive predictions of quantum theory have stimulated debate about the nature of reality. In his seminal work, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory. Bell showed that in any local realist theory the correlations between distant measurements satisfy an inequality and, moreover, that this inequality can be violated according to quantum theory. This provided a recipe for experimental tests of the fundamental principles underlying the laws of nature. In	& Citations EP cited by)
the past decades, numerous ingenious Bell inequality tests have been reported. However, because of experimental limitations, all experiments to date required additional assumptions to obtain a contradiction with local realism, resulting in loopholes. Here we report on a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We employ an event-ready scheme that enables the	hat is this?)

Outline

- Part I: Implications of closing loopholes in Bell tests
 - Security against blinding attacks & friends in QKD
- **Part II**: Is |S|>2 the only challenge?
 - Tsirelson bound
 - Grinbaum bound
- **Part III**: An alternative way to assess the quantumness of a system

Part I: Bell tests and loopholes

- History of Bell tests
 - 1972/74: Freedman, Clauser: First tests
 - 1981: Aspect, Grangier, Roger: Choice of measurement
 - 1998: Weihs et al.: Locality loophole, random choice
 - 2001: Rowe et al.: Detection loophole with ions
 - 2009: Ansman et al: Detection loophole in SC qubits
 - 2013: Giustina et al.: Detection loophole for photons
 - 2015: Hanson team: All loopholes closed?

Ekert-91/Device-independent protocol

For proper settings 1, 2, 1', 2' and state

$$|\Psi^{-}\rangle \qquad S=\pm 2\sqrt{2}$$

 Estimate quantitatively the knowledge of Eve of raw key between A and B from S:

$$I_{E}(S) = h \left(1 + \frac{\sqrt{S^{2}/4 - 1}}{2} \right)$$

No fingerprint problems of photons due to side channels

A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, V. Scarani, PRL 98, 230501 (2007)

Secure against (many) side channels...

Practical implementation

A. Ling, M. Peoloso, I. Marcikic, V. Scarani, A. Lamas-Linares, CK; PRA 78, 020301R, 2008

...and forced to give a signal by bright light pulses:

Avalanche diode operates in PIN / normal amplification regime

Choose unpolarized / circularly polarized P_1 and different linear polarizations P_2 to fake a 'click'

"faked state"

our polarization detector

 Choose pulse amplitudes above +45 threshold, but below H/V threshold -- ideally 1- √2/2 margin for P₂

Faking the violation of a Bell inequality

(core part of device-independent QKD protocol)

- Alice & Bob will see "programmed" correlations in 25% of the cases (base match on both sides), rest nothing
- Alice and Bob cannot distinguish from lossy line....
- We programmed (and found) CHSH results from S = -4 4 with active choice

"Programming" measurement results

I. Gerhardt et al., Phys. Rev. Lett. 111, 103001 (2011)

Faked Bell results

How can DI-QKD break down?

- Losses in CHSH are removed by post-selecting pair observations using a fair sampling assumption
- Current pair sources (η = 70%) and detectors (η = 50% for non-cryogenic ones)
- Eve hides behind losses of transmission line. Best guess: optical fiber and ideal (η = 100%) detectors, active base choice: At 0.2dB/km@1550nm, T = 25% for dist = 30 km
- Only very short distances possible with current detectors

Can we expect all loopholes closed ?

Individually, they are all closed:

- Freedom of choice / Locality: Photons (Weihs et al. 1998)
- Detection loophole: lons (Rowe et al. 2001), other systems

Few days ago Probably later this year all in a single experiment:

- NV centers in diamond (efficient detection, fast): Delft
- Photonic systems: Vienna, UIUC,...?
- Neutral atoms: Munich

Part II: Tests beyond |S| < 2

- How well do you refute local variable theories? (higher signal/noise)
- How close can you reach the prediction of quantum physics?

Various Tests so far

Boris Cirel'son, Letters in Mathematical Physics 4, 93 (1980)

Corresponding Photonic References

- [9] S.J. Freedman and J.F. Clauser, *Phys. Rev. Lett.* 28, 938 (1972)
- [10] A. Aspect, P. Grangier, and G. Roger, *Phys. Rev. Lett.* **47**, 460 (1981)
- [11] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, and Y. Shih, *Phys. Rev. Lett.* **75**, 4337 (1995)
- [12] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, *Phys. Rev. Lett.* **81**, 5039 (1998)
- [13] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, *Phys. Rev. Lett.* 81, 3563 (1998)
- [14] B.G. Christensen, K.T. McCusker, J.B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, *Phys. Rev. Lett.* **111**, 130406 (2013).
- [15] M. Nawareg, F. Bisesto, V. D'Ambrosio, E. Amselem, F. Sciarrino, M. Bourennane, and A. Cabello, *arXiv:1311.3495 [quant-ph]*
- [16] B.G. Christensen, Y.-C. Liang, N. Brunner, N. Gisin, and P. G. Kwiat, *arXiv:1506.01649*

Grinbaum bound

• Assume an observer with limited string complexity

- Provides an alternative "underlying" description to observed phenomena that can be well approximated by Quantum physics in the "critical regime".
- For binary codes describing bipartite systems, there is "strong evidence" for an upper bound on bipartite correlations"

 $|S| \le 2.82537 = S_G < 2\sqrt{2} = S_T = 2.828427...$

Alexei Grinbaum: Quantum Theory as a Critical Regime of Language dynamics Found. Phys. 2015, (doi: 10.1007/s10701-015-9937-y, arXiv:1501:02710)

Experimental Setup

- Traditional Kwiat-95 type-II SPDC source weak pump, optimized for good balance, ~512 pairs/sec
- Very good polarizaton filters, find optimal measurement angles

Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995)

Visibility of polarization correlation

 $V_{HV} = 99.9 \pm 0.1\%$ $V_{\pm 45} = 99.9 \pm 0.1\%$

Other experimental details

 Low pump power: P=7mW leads to low accidental coincidences

 $r_{coinc} \sim 560$ events/sec

 $r_{acc} \sim 0.0067 \pm 0.0025$ events/sec

- Use good film polarization filters (better 1:10⁴), low wedge errors
- Optimize setting a₀ / b₀ to minimize impact on detector inefficiencies (we find a₀= 1.9°, b₀=22.9° etc)

Evaluate maximal CHSH Bell violation

 Choose optimal measurement directions a_{0, 1} and b_{0, 1} for

$$S = E(a_{0,}b_{0}) + E(a_{0,}b_{1}) + E(a_{1,}b_{1}) - E(a_{1,}b_{1})$$

• Evaluate correlations *E* from coincidence events *N* between different analyzer settings:

$$E(a_{0,}b_{0}) \approx \frac{N(a_{0,}b_{0}) - N(a_{0,+90^{\circ}},b_{0}) - N(a_{0,+90^{\circ}},b_{0}) - N(a_{0,}b_{0,+90^{\circ}}) + N(a_{0,+90^{\circ}},b_{0,+90^{\circ}})}{N(a_{0,}b_{0}) + N(a_{0,+90^{\circ}},b_{0}) + N(a_{0,+90^{\circ}},b_{0,+90^{\circ}}) + N(a_{0,+90^{\circ}},b_{0,+90^{\circ}})}$$

• Propagate errors on *N* into *S*, assume $\Delta N_i = \sqrt{N_i}$

Comparison, with this work

H.S. Poh, S.K. Joshi, A. Cere, A. Cabello, C.K., arXiv:1506.01865

Do we see really Poisson statistics?

Systematic errors

- Different filter settings result in different detector efficiencies
- These efficiencies drift (slowly) over time (pump freq drift)
- All slow drifts will *lower* the degree of violation

Correcting for different efficiencies?

• Extract different detector efficiencies from single/pair variations

• Correct count rates for efficiencies accordingly

 $S_C = 2.8281 \pm 0.0031$

Error increase comes from estimating efficiencies of detectors, would not be able to exceed Grinbaum limit statistically significantly:

> $S_C - S_G = 0.0027 \pm 0.0031$ $S_T - S_C = 0.0003 \pm 0.0031$

Part III: Compressibility tests

- Consider the physical world as a Turing machine and evaluate correlations via complexity in of measurement results
- Evaluate complexity via Normalized Information Distance
- Approximate NID by normalized compressibility distance (NCD)

Turing model of a simple system

Measurement result is string *x* of length *l*

Model of a correlated bipartite system

Information distance

Normalized information distance between two strings x, y:

$$NID(x, y) = \frac{K(x, y) - min[K(x), K(y)]}{max[K(x), K(y)]}$$

Kolmogorov complexity

Length of shortest program that generates the joint string (x, y) (concatenation of x and y)

M. Li, X. Chen, X. Li, B. Ma, P.M.B. Vitàny, IEEE Trans. On Inf. Theory 50, 3250 (2004)

Triangle inequality

• Correlation strings (x, y) for different settings $a_{0, 1}$ and $b_{0, 1}$:

$$NID(x_{a_0}, y_{b_0}) + NID(x_{a_1}, y_{b_0}) + NID(x_{a_1}, y_{b_1}) \\\geq NID(x_{a_0}, y_{b_1})$$

• Introduce testable quantity *S* :

$$S' = NID(x_{a_0}, y_{b_1}) - NID(x_{a_0}, y_{b_0}) - NID(x_{a_1}, y_{b_0}) - NID(x_{a_1}, y_{b_1})$$

• For a physical system that is governed by the Turing model:

 $S' \leq 0$

• Statistical approach:

$$\langle NID(x, y) \rangle = \frac{H(x, y) - min[H(x), H(y)]}{max[H(x), H(y)]}$$

Results in an entropic inequality of Braunstein/Caves

S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 61, 662 (1988)

 Interpretation and test requires assumption of *identically* independently distributed outputs of the system

Algorithmic approach

Approximate NID by Normalized Compression Distance

$$NID(x, y) \approx NCD(x, y)$$

$$NCD(x, y) = \frac{C(x, y) - min[C(x), C(y)]}{max[C(x), C(y)]}$$

Length of compressed outcome strings

• Triangle inequality can be tested experimentally:

$$S = NCD(x_{a_1}, y_{b_0}) - NCD(x_{a_0}, y_{b_0}) - NCD(x_{a_0}, y_{b_1}) - NCD(x_{a_1}, y_{b_1}) \le 0$$

What to test?

- Choose measurement suitable measurement directions $a_{0,1}$ and $b_{0,1}$
- Optimal angle: θ = 8.6°
- Record joint and single measurement outcomes for both sides, forming strings *x* and *y*
- Compress and determine *S*

Experimental setup

Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995)

Compression results

H.S. Poh, M. Marciewicz, P. Kurzynski, A. Cerè, D. Kaszlikowski, C.K, arXiv: 1504:03126

Performance of real compressors

Compression uniformity

Summary

 Closing loopholes in Bell tests is REALLY important for quantum key distribution

 Experimental evidence that Tsirelson's Bound can be reached, alternative Grinbaum model seems refuted/refutable

• Other measures for entanglement may not need iid assumption and can use information assessing tools like compressors

Thank you!

http://www.qolah.org

Part I: Ilja Gerhardt Qin Liu Antia Lamas-Linares Vadim Makarov Antia Lamas-Linares Valerio Scarani

Part II+ III: Poh Hou Shun Siddarth K. Joshi Marcin Markiewicz Paweł Krzyński Dagomir Kaszlikowski Adan Cabello Alessandro Cerè