Single photons

how to create them, how to see them

Alessandro Cerè

Intro

- light is quantum
- · light is cheap
- · let's use the quantum properties of light

Little interaction with the environment

We can send them across long distances

Little interaction with the environment

Hard to detect and to store

Outline

Photon: elementary, cheap, powerful

How would you like your photons?

Generating single photons

Photon

An elementary particle, the quantum of all forms of electromagnetic radiation.

Including light.

source: Wikipedia

Photons are quantum objects

source: www.photonics.com

Anti-photon

W.E. Lamb, Jr.

Optical Sciences Center, University of Arizona, Tucson, AZ 85721, USA

Received: 23 July 1994 / Accepted: 18 September 1994

I suggested that a license be required for use of the word "photon," and offered to give such a license to properly qualified people.

sources: Lamb, Appl. Phys. B 60, 77 (1995); Photo: wikipedia. "Seeing" photons is a destructive process

Conversion of photon into electrical pulses

· Limited efficiency η

Counting the number of photons?

Outline

Photon: elementary, cheap, powerful

How would you like your photons?

Generating single photons

Quantized Electromagnetic Field

In a finite volume L^3 , we can directly quantize an EM field mode

$$\hat{\mathbf{E}}(\vec{\mathbf{r}})_{\vec{\mathbf{k}},\vec{\mathbf{c}}} = \underbrace{i\sqrt{\frac{\hbar\omega_{k}}{2\epsilon_{0}L^{3}}}}_{\hat{\mathbf{E}}(-)}\vec{\mathbf{c}}\hat{\mathbf{k}}_{\vec{\mathbf{k}},\vec{\mathbf{c}}}^{\dagger}e^{i\left(\vec{\mathbf{k}}\cdot\vec{\mathbf{r}}-\omega_{k}t\right)} + \underbrace{\mathbf{c.c.}}_{\hat{\mathbf{E}}^{(+)}}$$

where

- $\vec{k}\,$ wave vector
- ω_{k} angular frequency. In vacuum $\omega_{k}=c\left|ec{k}
 ight|$
 - $ec{\varepsilon}$ polarization
 - \hat{a}^{\dagger} creator operator

Light classification

The second-order correlation function

Different light sources present different statistical properties (coherence).

We are particularly interested in second-order correlation function

$$g^{(2)}(\tau) = \frac{\left\langle \hat{\mathbf{E}}^{(-)}(t) \, \hat{\mathbf{E}}^{(-)}(t+\tau) \, \hat{\mathbf{E}}^{(+)}(t+\tau) \, \hat{\mathbf{E}}^{(+)}(t) \right\rangle}{\left\langle \hat{\mathbf{E}}^{(-)}(t) \hat{\mathbf{E}}^{(+)}(t) \right\rangle^2}$$

Hanbury Brown and Twiss interferometer

Coherence classification - thermal

Coherence classification - coherent

Coherence classification - anti-bunched (non-classical)

It's a multimode, free space world

We set some operative conditions to define what's a single photon in free space, and its usefulness.

Brightness

The probability of getting a click in response to an excitation. Low B messes up the purity: the state is a mixture of vacuum and $|1\rangle$.

Purity

It's a vague term, everyone uses it they way they prefer. IMHO: the description is closer to $|\psi\rangle$ than $\sum_i |\psi\rangle$. But it can also be associated to the fidelity of the output to the ideal $|1\rangle$.

Indistinguishability

All emitted photons are the same. We can test it with Hong-Ou-Mandel interference.

Outline

Photon: elementary, cheap, powerful

How would you like your photons?

Generating single photons

Single emitter Pairs of photons Single photons from a single "atom"

Single photons from a single "atom"

Single photons from a single "atom"

Localize the emitter

Localize the emitter

Stages of photon generation

- 1. excite the transition of interest
 - · electrical pulse
 - optical pulse

2. collect the emission

3. repeat

Stages of photon generation

- 1. excite the transition of interest
 - · electrical pulse
 - · optical pulse

2. collect the emission

the emission in a large solid angle

3. repeat

We can change the mode structure

source: S. Ritter, et al., Nature 484, 195 (2012).

Quantum Dot in cavity

source: N. Somaschi, et al., Nature Photonics 10, 195 (2016).

Single emitter

Pros

- · High brightness (with cavity)
- · good purity (filtering)

Cons

- · bad indistinguishability (solid state)
- requires trapping/cooling

Spontaneous parametric down conversion

generate photons in pairs

Conservations impose correlations

energy conservation

 $\hbar\omega_p = \hbar\omega_s + \hbar\omega_i$

momentum conservation

$$ec{\mathbf{k}}_{
m p} = ec{\mathbf{k}}_{
m s} + ec{\mathbf{k}}_{
m i}$$

SPDC + Cavity

Four-wave mixing

FWM in cold atoms

Heralding

Pros

- · wide range of wavelengths/bandwidths
- good purity (low brightness)
- · great indistinguishability

Cons

- limited brightness
- · poissonian process (high order pair generation)

cqtac@nus.edu.sg qolah.org quantumlah.org

Outline

Detecting single photons

Photoelectric effect Thermal effect

Avalanche photodiodes

source: http://www.wikiwand.com

APD is a mature technology

Different materials for different spectral regions

Si - visible range 400 nm to 1060 nm Dark count rate: 20 - 2000 cps

InGaAs - telecom range 900 nm to 1700 nm Dark count rate: > 1kcps

Transition edge sensors - $\eta\approx$ 98%

Slow: jitter > 100 ns

Very cold 100 mK

source: S. K. Joshi, Ph.D. thesis

We need to keep them very cold

A very sensitive bolometer

We can also count the number of photons

Superconducting nanowires - $\eta \approx$ 92%

العدار العدار العدار العدار الع

Very fast: jitter< 100 ps

"only" down to 4 K

source: MIT