Scattering of a single photon by a single atom An experiment

Alessandro Cerè

Outline

Exponentially rising single photons

Time inversion

Experiment

Outline

Exponentially rising single photons

Time inversion

Experiment

We generate correlated photon pairs using Four-Wave Mixing in cold ⁸⁷Rb atoms

T. Chanelière, et al., Phys. Rev. Lett. 96, 093604 (2006)
B. Srivathsan, et al., Phys. Rev. Lett. 111, 123602 (2013)
G. K. Gulati, et al., Phys. Rev. A 90, 033819 (2014)

We generate correlated photon pairs using Four-Wave Mixing in cold ⁸⁷Rb atoms

heralded single photons $g^{(2)} pprox 0$

frequency resonant with D2 line $\lambda_p = 780 \ nm$

compatible coherence time $\tau_{\rho}\approx\frac{\tau_{0}}{2}$

T. Chanelière, et al., Phys. Rev. Lett. 96, 093604 (2006)
B. Srivathsan, et al., Phys. Rev. Lett. 111, 123602 (2013)
G. K. Gulati, et al., Phys. Rev. A 90, 033819 (2014)

The source generates probe photons with an exponentially decaying temporal shape

The bi-photon state is nicely approximated by

$$\psi(t_{s}, t_{i}) = \mathbf{A} \exp\left(-\frac{t_{i} - t_{s}}{2\tau}\right) \Theta(t_{i} - t_{s})$$

Outline

Exponentially rising single photons

Time inversion

Experiment

Temporal correlation of the biphoton and heralding allow to change the shape of the probe photon

Description of the phase operation

$$\mathcal{C}(\delta') \,=\, rac{\sqrt{R_1}\,-\,\sqrt{R_2}\,e^{i\,\delta'/\Delta {f v}_f}}{1-\sqrt{R_1\,R_2}\,e^{i\,\delta'/\Delta {f v}_f}}\,,$$

We apply the phase operation to the bi-photon

$$\tilde{\Psi}(t_{s}, t_{i}) = \mathcal{F}_{s}^{-1} \left[\mathcal{C}(\omega_{s} - \omega_{s}^{0} - \delta) \cdot \mathcal{F}_{s} \left[\psi(t_{s}, t_{i}) \right] \right]$$

We exploit the temporal correlation of the biphoton to obtain exponentially rising temporal shape

B. Srivathsan, et al., Phys. Rev. Lett. 113, 163601 (2014)

Outline

Exponentially rising single photons

Time inversion

Experiment

We have a single atom trapped at the focus of a far off-resonant beam

M. K. Tey, et al., Nature Physics 4, 924 (2008)

Experimental setup

Time resolved transmission of "decaying" photons

Time resolved extinction of "decaying" photons

Time resolved transmission of "rising" photons

Time resolved extinction of "rising" photons

Different shapes lead to different absorption dynamics

Let's look at the excitation probability: Scattered light

direct bad signal to noise ratio depends on calibration of $\boldsymbol{\eta}$

Atomic excitation probability from the time-resolved reflection

Let's look at the excitation probability: Extinction

$$\frac{\partial}{\partial t} P_{e}(t) = \delta(t) - (1 - \Lambda) \Gamma_{0} P_{e}(t)$$

Atomic excitation probability from the time-resolved absorption

cqtac@nus.edu.sg qolah.org quantumlah.org