How did physicists detect Gravitational Waves?

Some tools that revealed the GW150914 event

C. Kurtsiefer, Physics enrichment camp 2016 @ NUS

The Story in the News

week ending
12 FEBRUARY 2016

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al. ${ }^{*}$

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21}. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equival

The Situation

small strain σ of space

long distance d

$$
d \approx 410 \mathrm{Mpc} \approx 1.34 \cdot 10^{9} \mathrm{ly} \approx 1.26 \cdot 10^{25} \mathrm{~m} \quad \sigma=\Delta I / / \approx 10-21
$$

How to test strain σ ?

(a)

$$
\sigma=\frac{\Delta L_{x}}{L_{x}}=-\frac{\Delta L_{y}}{L_{y}}
$$

Round trip times of light between fixed points:

A, B, C : masses at rest
$L_{x}=L_{y}$ in quiet times
$t_{x, y}=2 L_{x, y} / c_{0}$
$t_{x}-t_{y}=0$: no strain
$t_{x}-t_{y} \neq 0$: strain

Michelson and Morley 1887

 THE

Michelson and Morley Result:

- Speed of light does not depend on direction of propagation
- Same speed of light at different times in the year
- No "ether" or reference that supports the propagation of light
- One of the starting points for theory of special relativity

Michelson Interferometer

Mirror

Output

Light as a wave

Light of fixed frequency $f: \quad E(x, t)=E_{0} \sin (k x-\omega t)$

$$
k=\frac{2 \pi}{\lambda}, \quad \omega=2 \pi f
$$

Speed of light c_{0} is constant: (and independent of direction

$$
\omega=c_{0} \cdot k, \quad c_{0}=\lambda \cdot f
$$ and reference frame)

Symmetric Beam Splitter

$$
\binom{E_{c}}{E_{d}}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \cdot\binom{E_{a}}{E_{b}}
$$

E E_{b}

output beams with amplitude reduced by $\sqrt{ } 2$

Superposition of light waves I

Superposition of light waves II

Adding two amplitudes

Just before recombination:

$$
\begin{aligned}
E_{a} & =\frac{E_{0}}{\sqrt{2}} \cos \left(2 k L_{y}-\omega t\right) \\
E_{b} & =\frac{E_{0}}{\sqrt{2}} \cos \left(2 k L_{x}-\omega t\right)
\end{aligned}
$$

Output field:

$$
\begin{aligned}
E_{\text {out }}= & \frac{1}{\sqrt{2}}\left(E_{a}-E_{b}\right) \\
= & \cdots \\
= & E_{0} \sin \left(k\left(L_{y}-L_{x}\right)\right) \\
& \times-\sin \left(k\left(L_{y}+L_{x}\right)-\omega t\right)
\end{aligned}
$$

Light field and optical power

Plane wave light field:
$E(x, t)=$

$$
E_{0} \cos (k \cdot x-\omega \cdot t)
$$

Power on detector:

$$
\begin{aligned}
P= & \frac{\Delta E}{\Delta t}=\frac{\Delta E}{\Delta V} \cdot \frac{\Delta V}{\Delta t}=\frac{\Delta E}{\Delta V} \cdot \frac{A \cdot \Delta I}{\Delta t}=\left[2 \frac{\epsilon_{0}}{2}\left\langle E^{2}\right\rangle\right] \cdot A c_{0}=\frac{\epsilon_{0}}{2} E_{0}^{2} A c_{0} \\
& \text { Energy per volume }
\end{aligned}
$$

Power at output of interferometer

Can the demo setup detect GW?

Measure $P_{\text {out }}$ near $\Delta L=\lambda / 8$:

$$
\frac{\delta P_{\mathrm{out}}}{\delta(\Delta L)}=\left.\frac{d P_{\mathrm{out}}}{d \Delta L}\right|_{\Delta L=\lambda / 8}=2 \pi \frac{P_{\mathrm{in}}}{\lambda}
$$

Power resolution	$\delta P_{\text {out }} / P_{\text {in }}$	1%
Wavelength	λ	632 nm
Position resolution	$\delta(\Delta L)$	1 nm
Length	L	0.3 m
Strain resolution	$\delta \sigma=$	$3 \cdot 10^{-9}$
GW150914 peak strain	σ	10^{-21}

$$
\delta(\Delta L)=\frac{\delta P_{\mathrm{out}}}{P_{\mathrm{in}}} \cdot \frac{\lambda}{2 \pi}
$$

Missing 13-14 orders of magnitude....

How to increase sensitivity?

Reduce strain uncertainty $\delta \sigma$:

$$
\begin{aligned}
\delta \sigma=\frac{\delta(\Delta L)}{L}=\frac{1}{L} \cdot\left[\frac{d\left(P_{\text {out }} / P_{\text {in }}\right)}{d(\Delta L)}\right]^{-1} \cdot \frac{1}{P_{\text {in }}} \cdot \delta P_{\text {out }} \\
\text { arm } \begin{array}{lll}
\text { interferometer } & \text { power } & \text { power } \\
\text { length } & \text { responsiveness } & \\
\text { uncertainty }
\end{array}
\end{aligned}
$$

- Increase L
- Increase interferometer responsiveness
- Increase $P_{\text {in }} \&$ decrease $\delta P_{\text {out }}$
-(Decrease environmental impact)

Increase Arm Length, $I^{\text {st }}$ try

LIGO, Hanford site
$0.3 \mathrm{~m} \rightarrow 4 \mathrm{~km}$: improve ~ 4 orders of magnitude in $\delta \sigma$

Increase Arm Length, $2^{\text {nd }}$ try

eLISA project

http://elisascience:org
$0.3 \mathrm{~m} \rightarrow 10^{9} \mathrm{~m}:$ improve $\sim 9-10$ orders of magnitude in $\delta \sigma$

Increase response per length L

Michelson \& Morley 1887:
4 round trips

Reflectivity of metal mirrors

Silver: $R \approx 90 \%$ at 500 nm
Gold: $\mathrm{R} \approx 98 \%$ at 1064 nm

Dielectric Mirrors

Interference of reflections from thin transparent films

Modern optical mirrors: $R>99.999 \%$
for 103-104 round trips

15.. 25 doublets

Fabry-Perot Resonator

For $R_{1}=R_{2}=R$, no losses:

$$
P_{\text {out }}(\Delta L)=\frac{P_{\text {in }}}{1+f \sin ^{2}\left(\frac{2 \pi \Delta L}{\lambda}\right)}
$$

with $f=\frac{4 R}{(1-R)^{2}}$

Fabry-Perot Resonator II

Often used: finesse

$$
\begin{aligned}
& F=\frac{\lambda / 2}{F W H M} \approx \frac{\pi}{1-R} \\
& F \approx 105 \text { for } R=97 \%
\end{aligned}
$$

Fabry-Perot responsiveness:

$$
\left[\frac{d\left(P_{\mathrm{out}} / P_{\mathrm{in}}\right)}{d(\Delta L)}\right] \approx \frac{2 \pi}{\lambda} \cdot \frac{1}{1-R}
$$

Michelson responsiveness:

$$
\left[\frac{d\left(P_{\text {out }} / P_{\text {in }}\right)}{d(\Delta L)}\right]_{\mid}=\frac{2 \pi}{\lambda}
$$

Fabry-Perot Resonator as Mirror

Simple mirror in Michelson interferometer:

Asymmetric Fabry-Perot resonator:

$$
\begin{aligned}
P_{\text {back }} & =P_{\text {in }} \\
\Delta \varphi_{\mathrm{C}} & =? ? ?
\end{aligned}
$$

Fabry-Perot Mirror reponse

Solution: $\quad \tan \frac{\Delta \varphi_{\mathrm{C}}}{2}=\frac{1+\sqrt{R}}{1-\sqrt{R}} \cdot \tan \frac{\Delta \varphi_{M}}{2}$

Near $\Delta \varphi_{C}=0$:

$$
\Delta \varphi_{\mathrm{C}} \approx \frac{1+\sqrt{R}}{1-\sqrt{R}} \Delta \varphi_{\mathrm{M}} \approx \frac{4}{1-R} \Delta \varphi_{\mathrm{M}}
$$

Super-Michelson interferometer

Michelson sensitivity sweet spot

Phase sensitivity:

$$
\frac{d P_{\mathrm{out}}(\varphi)}{d \varphi}=P_{\text {in }} \sin (2 \varphi)
$$

Phase sensitivity per output power:

$$
\frac{d P_{\mathrm{out}}(\varphi) /\left.d \varphi\right|_{\varphi_{0}}}{P_{\mathrm{out}}}=\frac{\sin \left(2 \varphi_{0}\right)}{\sin ^{2} \varphi_{0}} \approx \frac{2}{\varphi_{0}}
$$

Work near dark fringe ($\varphi_{0} \approx 0$), use lots of power!

Light detection

Photodiode

Amp meter

Photocurrent / is proportional to $P_{\text {opt }}$
Energy absorbed per time Δt :

$$
\text { Energy }=P_{\mathrm{opt}} \cdot \Delta t
$$

Number of electrons per $\Delta t: \quad n=\frac{\text { Energy }}{h \cdot f}=\frac{P_{\text {opp }} \cdot \Delta t}{h \cdot f}$

Photocurrent:

$$
I=\frac{n \cdot e}{\Delta t}=\frac{P_{\mathrm{opp}} \cdot e}{h \cdot f}
$$

Noise in Light detection

Uncertainty of electron number: $\quad \delta n=\sqrt{n} \quad$ Shot noise

Relative uncertainty in power; $\quad \frac{\delta P_{\text {opt }}}{P_{\text {opt }}}=\frac{1}{\sqrt{n}}=\sqrt{\frac{h \cdot f}{P_{\text {opt }} \cdot \Delta t}}$

More optical power \rightarrow less noise
Longer measurement time \rightarrow less noise

The full setup

Phys. Rev. Lett. 116, 061102 (2016)

Holding the mirrors＂at rest＂

Aston et al．，Class．Quant．Gravity 29， 235004 （2012）

Pendulum as noise eater

Pendulum chain of 4

Susceptibilities get multiplied

Also: avoid thermal noise in suspension

Moving the mirrors quietly...

Aston et al., Class. Quant. Gravity 29, 235004 (2012)

The first result...

Where from here?

Different gravitational wave telescopes....

Souce: eLISA consortium

