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The Story in the News



  

The Situation

major
incident

long distance d

small strain σ
of space

d ≈ 410 Mpc ≈ 1.34 ∙ 109 ly ≈ 1.26 ∙ 1025 m              σ = Δl / l  ≈ 10-21



  

How to test strain σ?

Round trip times of light between fixed points:

Ly

Lx

ty

tx

A

B

C

A, B, C: masses at rest
Lx = Ly  in quiet times
tx,y = 2 Lx,y / c0

tx - ty = 0: no strain
tx - ty ≠ 0: strain

σ=
ΔLx

Lx

=−
ΔLy

Ly



  

Michelson and Morley 1887



  

Michelson and Morley Result:

• Speed of light does not depend on direction of propagation
• Same speed of light at different times in the year

• No “ether” or reference that supports the propagation of light

• One of the starting points for theory of special relativity

Earth @ spring

Earth @ fall

Sun

v

v

Ether wind



  

Michelson Interferometer

Ly

Mirror

Beam
SplitterLight source

Mirror

Lx

Output



  

Light as a wave

x

E(x)
t = 0 t > 0

Light of fixed frequency f: E (x ,t )=E0sin(k x−ω t )

k=
2π
λ

, ω=2π f

Speed of light c0 is constant:
(and independent of direction
 and reference frame)

ω=c0⋅k , c0=λ⋅f



  

Symmetric Beam Splitter

(Ec

E d
)=

1

√2 (1 1
1 −1)⋅(Ea

E b
)

Ec

Ed
Ea

Eb

output beams
with amplitude 
reduced by √2



  

Superposition of light waves I

(Ec

E d
)= 1

√2 (1 1
1 −1)⋅(Ea

Eb
)

Ea

Eb
Ec

Ed



  

Superposition of light waves II

(Ec

E d
)=

1

√2 (1 1
1 −1)⋅(Ea

E b
)

Ea

Eb
Ec

Ed



  

Adding two amplitudes

(E back

E out
)=

1

√2 (1 1
1 −1)⋅(Ea

Eb
)

Ly

Lx

E0
Ea

Eb

Eout

Eback

Ea =
E0

√2
cos(2k Ly−ω t )

Eb =
E0

√2
cos(2k Lx−ω t )

Eout =
1

√2
(Ea−E b )

= …
= E0 sin(k (Ly−Lx))

  ×−sin(k (Ly+Lx)−ω t )

Just before recombination:

Output field:



  

Light field and optical power

P=
ΔE
Δ t

=
ΔE
ΔV

⋅
ΔV
Δ t

=
ΔE
ΔV

⋅
A⋅Δ l
Δ t

=[2
ϵ0

2
〈E2

〉]⋅Ac0=
ϵ0

2
E0

2 Ac0

Plane wave light field:

E (x ,t )=
E0cos (k⋅x−ω⋅t )

Energy per volume

Power on detector:



  

Power at output of interferometer

Ly

Lx

Pin

Pout

Pback

Output power:

Pout = P in sin2 (k ΔL )

Pback = P in cos2 (k ΔL )

with ΔL=Ly−Lx



  

Can the demo setup detect GW?

Power 
resolution

δPout / Pin 1%

Wavelength λ 632 nm

Position 
resolution

δ(ΔL) 1 nm

Length L 0.3 m

Strain 
resolution

δσ =
δ(ΔL)/ L

3∙10-9

GW150914
peak strain

σ 10-21δPout

δ(ΔL)
=

d P out

d ΔL ∣
ΔL=λ/8

=2π
P in

λ

δ(ΔL)=
δPout

P in

⋅ λ
2π

Missing 13-14 orders
of magnitude....

Measure Pout near ΔL=λ/8: 



  

How to increase sensitivity?

δσ =
δ(ΔL)

L
=

1
L

⋅ [d (P out /P in)

d (ΔL) ]
−1

⋅
1

P in

⋅ δPout

Reduce strain uncertainty δσ:

arm
length

interferometer
responsiveness

power
uncertainty

●Increase L

●Increase interferometer responsiveness

●Increase Pin & decrease δPout

●(Decrease environmental impact)

power



  

Increase Arm Length, 1st try

4 km

0.3 m → 4 km:  improve ~4 orders of magnitude in δσ

LIGO, Hanford site



  

Increase Arm Length, 2nd try

106 km

eLISA project

http://elisascience.org

0.3m →109m: improve ~9-10 orders of magnitude in δσ



  

Increase response per length L

Michelson & Morley 1887:
4 round trips

Reflectivity of metal mirrors

Wavelength

Silver: R ≈ 90% at 500 nm

Gold: R ≈ 98% at 1064 nm



  

Dielectric Mirrors

Modern optical mirrors:
R > 99.999%

for 103-104 round trips

Interference of reflections from thin transparent films

15..25 doublets



  

Fabry-Perot Resonator

Dielectric
mirrors

For R1 = R2 = R, no losses:

Pout (ΔL)=
P in

1+f sin2(
2πΔL

λ
)

f =
4R

(1−R)
2

with

ΔL

Pout / Pin
1

0

R =
  97%



  

Fabry-Perot Resonator II

ΔL

Pout / Pin1

0

Often used:  finesse

1

0
ΔL

FWHM

F=
λ/2

FWHM
≈ π

1−R

[d (P out /P in)

d (ΔL) ] ≈
2π
λ

⋅
1

1−R

Fabry-Perot responsiveness:

F  ≈ 105 for R = 97%

Michelson responsiveness: 

[d (P out /P in)

d (ΔL) ] =
2π
λ



  

Fabry-Perot Resonator as Mirror

Simple mirror in Michelson interferometer:

Asymmetric Fabry-Perot resonator:

Pback = Pin

ΔϕM =
4π
λ

ΔL

Pback = Pin

ΔϕC = ???



  

Fabry-Perot Mirror reponse

tan
ΔϕC

2
=

1+√R
1−√R

⋅ tan
ΔϕM

2
Solution:

ΔϕC

4

0%
50%

R = 99%

90%

Near ΔφC = 0: ΔϕC ≈
1+√R
1−√R

ΔϕM ≈
4

1−R
ΔϕM

ΔϕM



  

Super-Michelson interferometer

Keep both Fabry-Perots 
near resonance

Sensitivity enhancement 
by 4/(1-R) 

Beam 
splitter



  

Michelson sensitivity sweet spot

Pout (ϕ)=P insin2
ϕ

d Pout (ϕ)

d ϕ
=P in sin(2ϕ)

Phase sensitivity:

Output power:

Phase sensitivity per output power:

d Pout(ϕ)/d ϕ∣ϕ0

Pout

=
sin(2ϕ0)

sin2
ϕ0

≈
2
ϕ0

Work near dark fringe (φ0 ≈ 0), use lots of power!

φ

φ

φ



  

Light detection

Popt

Photocurrent I is proportional to Popt

n =
Energy

h⋅f
=

Popt⋅Δ t

h⋅f

Energy absorbed per time Δt :

Amp meter

Photodiode

Energy = Popt⋅Δ t

Number of electrons per Δt :

Photocurrent: I =
n⋅e
Δ t

=
P opt⋅e

h⋅f



  

Noise in Light detection

Uncertainty of electron number: δn = √n

Relative uncertainty in power; δPopt

Popt

=
1

√n
= √ h⋅f

Popt⋅Δ t

More optical power  → less noise

Shot noise

Longer measurement time → less noise



  

The full setup

Phys. Rev. Lett. 116, 061102 (2016)



  

Holding the mirrors “at rest”

Aston et al.,Class. Quant. Gravity 29, 235004 (2012)

4



  

Pendulum as noise eater
Assume harmonic shakes from suspension:

x in(t )= x̂ in cos(ω t )

Test mass will shake with same frequency:

xout(t )= x̂out cos(ω t )

ω0=√ g
l

∣ x̂out

x̂ in
∣

ω / ω0

~ ω -2



  

Pendulum chain of 4

f /Hz

∣ x̂4

x̂ in
∣

Susceptibilities get multiplied

~ ω -8

f1 = 3.1 Hz
f2 = 0.85 Hz
f3 = 0.69 Hz
f4 = 0.45 Hz

Also: avoid thermal noise in suspension



  

Moving the mirrors quietly...

Aston et al.,Class. Quant. Gravity 29, 235004 (2012)



  

The first result...



  

Where from here?

Souce: eLISA consortium

Different gravitational wave telescopes....
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