How did physicists detect Gravitational Waves?

Some tools that revealed the GW150914 event

C. Kurtsiefer, Physics enrichment camp 2016 @ NUS

The Story in the News

PRL 116, 061102 (2016)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

Ś

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a

false alarm rate estimated to be less than 1 event per 203 000 years, equival than 5.1 σ . The source lies at a luminosity distance of 410^{+160}_{-180} Mpc correspondin In the source frame, the initial black hole masses are $36^{+4}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, an $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties c These observations demonstrate the existence of binary stellar-mass black hole s detection of gravitational waves and the first observation of a binary black h

DOI: 10.1103/PhysRevLett.116.061102

The Situation

 $d \approx 410 \text{ Mpc} \approx 1.34 \cdot 10^9 \text{ ly} \approx 1.26 \cdot 10^{25} \text{ m}$

How to test strain σ ?

Round trip times of light between fixed points:

A, B, C: masses at rest $L_x = L_y$ in quiet times $t_{x,y} = 2 L_{x,y} / c_0$

 $\frac{t_x}{t_x} - \frac{t_y}{t_y} = 0$: no strain $\frac{t_x}{t_x} - \frac{t_y}{t_y} \neq 0$: strain

Michelson and Morley 1887

THE

ART. XXXVI.—On the Relative Motion of the Earth and the Luminiferous Ether; by ALBERT A. MICHELSON and EDWARD W. MORLEY.*

THE discovery. of the aberration of light was soon followed by an explanation according to the emission theory. The effect was attributed to a simple composition of the velocity of light with the velocity of the earth in its orbit. The difficulties in

AM. JOUR. SCI.—THIRD SERIES, VOL. XXXIV, NO. 203.—Nov., 1887. 22

Michelson and Morley Result:

- Speed of light does not depend on direction of propagation
- Same speed of light at different times in the year
- No "ether" or reference that supports the propagation of light
- One of the starting points for theory of special relativity

Michelson Interferometer

Light as a wave

Light of fixed frequency $f: E(x, t) = E_0 \sin(kx - \omega t)$

$$k=\frac{2\pi}{\lambda}, \quad \omega=2\pi f$$

Speed of light c_0 is constant: (and independent of direction and reference frame)

$$\omega = c_0 \cdot k$$
, $c_0 = \lambda \cdot f$

Symmetric Beam Splitter

output beams with amplitude reduced by $\sqrt{2}$

Superposition of light waves I

Superposition of light waves II

Adding two amplitudes

Just before recombination:

$$E_{a} = \frac{E_{0}}{\sqrt{2}}\cos(2kL_{y}-\omega t)$$
$$E_{b} = \frac{E_{0}}{\sqrt{2}}\cos(2kL_{x}-\omega t)$$

Output field:

$$E_{\text{out}} = \frac{1}{\sqrt{2}} (E_a - E_b)$$

= ...
=
$$E_0 \sin(k(L_y - L_x))$$

 $\times -\sin(k(L_y + L_x) - \omega t)$

$$\begin{pmatrix} \boldsymbol{E}_{back} \\ \boldsymbol{E}_{out} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{E}_{a} \\ \boldsymbol{E}_{b} \end{pmatrix}$$

Light field and optical power

Power at output of interferometer

Can the demo setup detect GW?

Measure
$$P_{out}$$
 near $\Delta L = \lambda/8$:

δP_{out}	dP_{out}	$-2\pi \frac{P_{ii}}{2}$	า
$\overline{\delta(\Delta L)}^{-}$	$d\Delta L$	$\frac{-2 \pi}{\lambda}$	

$$\delta(\Delta L) = \frac{\delta P_{\text{out}}}{P_{\text{in}}} \cdot \frac{\lambda}{2\pi}$$

Power resolution	δP _{out} / P _{in}	1%
Wavelength	λ	632 nm
Position resolution	δ(Δ <i>L</i>)	1 nm
Length	L	0.3 m
Strain resolution	δσ = δ(ΔL)/ L	3·10 ⁻⁹
GW150914 peak strain	σ	10 ⁻²¹

Missing 13-14 orders of magnitude....

How to increase sensitivity?

Reduce strain uncertainty $\delta\sigma$:

Increase L

Increase interferometer responsiveness

• Increase P_{in} & decrease δP_{out}

(Decrease environmental impact)

Increase Arm Length, 1st try

 $0.3 \text{ m} \rightarrow 4 \text{ km}$: improve ~4 orders of magnitude in $\delta \sigma$

Increase Arm Length, 2nd try

 $0.3m \rightarrow 10^9m$: improve ~9-10 orders of magnitude in $\delta\sigma$

Increase response per length L

Michelson & Morley 1887: 4 round trips

Reflectivity of metal mirrors

5 µm

Dielectric Mirrors

Interference of reflections from thin transparent films

Modern optical mirrors: R > 99.999%

for 10³-10⁴ round trips

Fabry-Perot Resonator

Fabry-Perot Resonator II

Often used: finesse

$$F = \frac{\lambda/2}{FWHM} \approx \frac{\pi}{1-R}$$

$F \approx 105$ for R = 97%

Fabry-Perot responsiveness:

$$\left[\frac{d(P_{out}/P_{in})}{d(\Delta L)}\right] \approx \frac{2\pi}{\lambda} \cdot \frac{1}{1-R}$$

Michelson responsiveness:

$$\left[\frac{d(P_{\rm out}/P_{\rm in})}{d(\Delta L)}\right] = \frac{2\pi}{\lambda}$$

Fabry-Perot Resonator as Mirror

Simple mirror in Michelson interferometer:

Fabry-Perot Mirror reponse

Near $\Delta \phi_{\rm C} = 0$: $\Delta \phi_{\rm C} \approx \frac{1 + \sqrt{R}}{1 - \sqrt{R}} \Delta \phi_{\rm M} \approx \frac{4}{1 - R} \Delta \phi_{\rm M}$

Super-Michelson interferometer

Michelson sensitivity sweet spot

Work near dark fringe ($\varphi_0 \approx 0$), use lots of power!

Light detection

Photodiode

Amp meter

Photocurrent *I* is proportional to P_{opt} Energy absorbed per time Δt : Energy = $P_{opt} \cdot \Delta t$

Number of electrons per Δt :

$$n = \frac{\text{Energy}}{h \cdot f} = \frac{P_{\text{opt}} \cdot \Delta t}{h \cdot f}$$

Photocurrent:

$$I = \frac{n \cdot e}{\Delta t} = \frac{P_{\text{opt}} \cdot e}{h \cdot f}$$

Noise in Light detection

Uncertainty of electron number: $\delta n = \sqrt{n}$ Shot noise

Relative uncertainty in power;

$$\frac{\delta P_{\text{opt}}}{P_{\text{opt}}} = \frac{1}{\sqrt{n}} = \sqrt{\frac{h \cdot f}{P_{\text{opt}} \cdot \Delta t}}$$

More optical power \rightarrow less noise

Longer measurement time \rightarrow less noise

The full setup

Phys. Rev. Lett. 116, 061102 (2016)

Holding the mirrors "at rest"

Aston et al., Class. Quant. Gravity 29, 235004 (2012)

Pendulum as noise eater

Pendulum chain of 4

g

Also: avoid thermal noise in suspension

Moving the mirrors quietly...

Local control applied at each top mass separately using 6 BOSEMs in each case, arranged as shown.

> Global control signals are applied between the main and reaction chains at the three lower stages using

- BOSEMs at the upper intermediate mass
- AOSEMs at the penultimate mass
- Electrostatic drive at the test mass.

Aston et al., Class. Quant. Gravity 29, 235004 (2012)

The first result...

Where from here?

Different gravitational wave telescopes....

Souce: eLISA consortium